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Preface

The greatest possibilities of visual display lie in vividness and inescapability of the
intended message. A visual display can stop your mental flow in its tracks and make
you think. A visual display can force you to notice what you never expected to see.

John W. Tukey (1990)

Data analysis and graphics

This book stems from the conviction that data analysis and statistical graphics should go hand-
in-hand in the process of understanding and communicating statistical data. Statistical summaries
compress a data set into a few numbers, the result of an hypothesis test, or coefficients in a fitted
statistical model, while graphical methods help us to explore patterns and trends, see the unex-
pected, identify problems in an analysis, and communicate results and conclusions in principled
and effective ways.

This interplay between analysis and visualization has long been a part of statistical practice
for quantitative data. Indeed, the origin of correlation, regression, and linear models (regression,
ANOVA) can arguably be traced to Francis Galton’s (1886) visual insight from a scatterplot of
heights of children and their parents on which he overlaid smoothed contour curves of roughly
equal bivariate frequencies and lines for the means of Y |X and X |Y (described in Friendly and
Denis (2005), Friendly et al. (2013)).

The analysis of discrete data is a much more recent arrival, beginning in the 1960s and giving
rise to a few seminal books in the 1970s (Bishop et al., 1975, Haberman, 1974, Goodman, 1978,
Fienberg, 1980). Agresti (2013, Chapter 17) presents a brief historical overview of the development
of these methods from their early roots around the beginning of the 20th century.

Yet curiously, associated graphical methods for categorical data were much slower to develop.
This began to change as it was recognized that counts, frequencies, and discrete variables required
different schemes for mapping numbers into useful visual representations (Friendly, 1995, 1997),
some quite novel. The special nature of discrete variables and frequency data vis-a-vis statistical
graphics is now more widely accepted, and many of these new graphical methods (e.g., mosaic
displays, fourfold plots, diagnostic plots for generalized linear models) have become, if not main-
stream, then at least more widely used in research, teaching, and communication.

Much of what had been developed through the 1990s for graphical methods for discrete data was

xiii
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described in the book Visualizing Categorical Data (Friendly, 2000) and was implemented in SAS®

software. Since that time, there has been considerable growth in both statistical methods for the
analysis of categorical data (e.g., generalized linear models, zero-inflation models, mixed models for
hierarchical and longitudinal data with discrete outcomes), along with some new graphical methods
for visualizing and interpreting the results (3D mosaic plots, effect plots, diagnostic plots, etc.).
The bulk of these developments have been implemented in R, and the time is right for an in-depth
treatment of modern graphical methods for the analysis of categorical data, to which you are now
invited.

Goals

This book aims to provide an applied, practically oriented treatment of modern methods for the anal-
ysis of categorical data—discrete response data and frequency data—with a main focus on graphical
methods for exploring data, spotting unusual features, visualizing fitted models, and presenting or
explaining results.

We describe the necessary statistical theory (sometimes in abbreviated form) and illustrate the
practical application of these techniques to a large number of substantive problems: how to organize
the data, conduct an analysis, produce informative graphs, and understand what they have to say
about the data at hand.

Overview and organization of this book

This book is divided into three parts. Part I, Chapters 1–3, contains introductory material on graph-
ical methods for discrete data, basic R skills needed for the book, and methods for fitting and
visualizing one-way discrete distributions.

Part II, Chapters 4–6, is concerned largely with simple, traditional non-parametric tests and
exploratory methods for visualizing patterns of association in two-way and larger frequency tables.
Some of the discussion here introduces ideas and notation for loglinear models that are treated more
generally in Part III.

Part III, Chapters 7–11, discusses model-based methods for the analysis of discrete data. These
are all examples of generalized linear models. However, for our purposes, it has proved more
convenient to develop this topic from the specific cases (logistic regression, loglinear models) to the
general rather than the reverse.

Chapter 1: Introduction. Categorical data require different statistical and graphical methods than
commonly used for quantitative data. This chapter outlines the basic orientation of the book
toward visualization methods and some key distinctions regarding the analysis and visualization
of categorical data.

Chapter 2: Working with Categorical Data. Categorical data can be represented in various forms:
case form, frequency form, and table form. This chapter describes and illustrates the skills and
techniques in R needed to input, create, and manipulate R data objects to represent categorical
data, and convert these from one form to another for the purposes of statistical analysis and
visualization, which are the subject of the remainder of the book.

Chapter 3: Fitting and Graphing Discrete Distributions. Understanding and visualizing discrete
data distributions provides a building block for model-based methods discussed in Part III.
This chapter introduces the well-known discrete distributions—the binomial, Poisson, negative-
binomial, and others—in the simplest case of a one-way frequency table.
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Chapter 4: Two-Way Contingency Tables. The analysis of two-way frequency tables concerns the
association between two variables. A variety of specialized graphical displays help to visualize
the pattern of association, using area of some region to represent the frequency in a cell. Some
of these methods are focused on visualizing an odds ratio (for 2×2 tables), or the general pattern
of association, or the agreement between row and column categories in square tables.

Chapter 5: Mosaic Displays for n-Way Tables. This chapter introduces mosaic displays, designed
to help to visualize the pattern of associations among variables in two-way and larger tables.
Extensions of this technique can reveal partial associations and marginal associations, and shed
light on the structure of loglinear models themselves.

Chapter 6: Correspondence Analysis. Correspondence analysis provides visualizations of associ-
ations in a two-way contingency table in a small number of dimensions. Multiple correspon-
dence analysis extends this technique to n-way tables. Other graphical methods, including mo-
saic matrices and biplots, provide complementary views of loglinear models for two-way and
n-way contingency tables.

Chapter 7: Logistic Regression Models. This chapter introduces the modeling framework for cat-
egorical data in the simple situation where we have a categorical response variable, often binary,
and one or more explanatory variables. A fitted model provides both statistical inference and
prediction, accompanied by measures of uncertainty. Data visualization methods for discrete
response data must often rely on smoothing techniques, including both direct, non-parametric
smoothing and the implicit smoothing that results from a fitted parametric model. Diagnostic
plots help us to detect influential observations that may distort our results.

Chapter 8: Models for Polytomous Responses. This chapter generalizes logistic regression mod-
els for a binary response to handle a multi-category (polytomous) response. Different models
are available depending on whether the response categories are nominal or ordinal. Visualiza-
tion methods for such models are mostly straightforward extensions of those used for binary
responses presented in Chapter 7.

Chapter 9: Loglinear and Logit Models for Contingency Tables. This chapter extends the model-
building approach to loglinear and logit models. These comprise another special case of gen-
eralized linear models designed for contingency tables of frequencies. They are most easily
interpreted through visualizations, including mosaic displays and effect plots of associated logit
models.

Chapter 10: Extending Loglinear Models. Loglinear models have special forms to represent ad-
ditional structure in the variables in contingency tables. Models for ordinal factors allow a more
parsimonious description of associations. Models for square tables allow a wide range of spe-
cific models for the relationship between variables with the same categories. Another extended
class of models arise when there are two or more response variables.

Chapter 11: Generalized Linear Models. Generalized linear models extend the familiar linear mod-
els of regression and ANOVA to include counted data, frequencies, and other data for which the
assumptions of independent, normal errors are not reasonable. We rely on the analogies between
ordinary and generalized linear models (GLMs) to develop visualization methods to explore the
data, display the fitted relationships, and check model assumptions. The main focus of this
chapter is on models for count data.

Audience

This book has been written to appeal to two broad audiences wishing to learn to apply methods for
discrete data analysis:
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• Advanced undergraduate and graduate students in the social and health sciences, epidemiology,
economics, business, and (bio)statistics

• Substantive researchers, methodologists, and consultants in various disciplines wanting to be
able to use these methods with their own data and analyses.

It assumes the reader has a basic understanding of statistical concepts at least at an intermediate
undergraduate level including regression and analysis of variance (for example, at the level of Neter
et al. (1990) or Mendenhall and Sincich (2003)). It is less technically demanding than other modern
texts covering categorical data analysis at a graduate level, such as Agresti (2013), Categorical
Data Analysis, Powers and Xie (2008), Statistical Methods for Categorical Data Analysis, and
Christensen (1997), Log-Linear Models and Logistic Regression. Nevertheless, there are some
topics that are a bit more advanced or technical, and these are marked as ? or ?? sections.

As well, there are a number of mathematical or statistical topics that we use in passing, but do
not describe in these pages (some matrix notation, basic probability theory, maximum likelihood
estimation, etc.). Most of these are described in Fox (2015), which is available online and serves
well as a supplement to this book.

In addition, it is not possible to include all details of using R effectively for data analysis. It is
assumed that the reader has at least basic knowledge of the R language and environment, includ-
ing interacting with the R console (RGui for Windows, R.app for Mac OS X) or other graphical
user interface (e.g., RStudio), using R functions in packages, getting help for these from R, etc.
One introductory chapter (Chapter 2) is devoted to covering the particular topics most important to
categorical data analysis, beyond such basic skills needed in the book.

Textbook use

This book is most directly suitable for a one-semester applied advanced undergraduate or grad-
uate course on categorical data analysis with a strong emphasis on the use of graphical meth-
ods to understand and explain data and results of analysis. A detailed outline of such a course,
together with lecture notes and assignments, is available at the first author’s web page, http:
//euclid.psych.yorku.ca/www/psy6136/, using this book as the main text. This course
also uses Agresti (2007), An Introduction to Categorical Data Analysis for additional readings.

For instructors teaching a more traditional course using one of the books mentioned above as the
main text, this book would be a welcome supplement, because almost all other texts treat graphical
methods only perfunctorily, if at all. A few of these contain a brief appendix mentioning software,
or have a related web site with some data sets and software examples. Moreover, none actually
describe how to do these analyses and graphics with R.

Features

• Provides an accessible introduction to the major methods of categorical data analysis for data
exploration, statistical testing, and statistical models.

• The emphasis throughout is on computing, visualizing, understanding, and communicating the
results of these analyses.

• As opposed to more theoretical books, the goal here is to help the reader to translate theory into
practical application, by providing skills and software tools for carrying out these methods.

• Includes many examples using real data, often treated from several perspectives.
• The book is supported directly by R packages vcd (Meyer et al., 2015) and vcdExtra (Friendly,

2015), along with numerous other R packages.
• All materials (data sets, R code) will be available online on the web site for the book,
http://datavis.ca/books/DDAR.

http://euclid.psych.yorku.ca/www/psy6136/
http://euclid.psych.yorku.ca/www/psy6136/
http://datavis.ca/books/DDAR
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• Each chapter contains a collection of lab exercises, which work through applications of some
of the methods presented in that chapter. This makes the book more suitable for both self-study
and classroom use.
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Categorical data consist of variables whose values comprise a set of discrete cate-
gories. Such data require different statistical and graphical methods than commonly used
for quantitative data. The focus of this book is on visualization techniques and graphical
methods designed to reveal patterns of relationships among categorical variables. This
chapter outlines the basic orientation of the book and some key distinctions regarding the
analysis and visualization of categorical data.

1.1 Data visualization and categorical data: Overview

Graphs carry the message home. A universal language, graphs convey information
directly to the mind. Without complexity there is imaged to the eye a magnitude to be
remembered. Words have wings, but graphs interpret. Graphs are pure quantity,
stripped of verbal sham, reduced to dimension, vivid, unescapable.

Henry D. Hubbard, in Foreword to Brinton (1939), Graphic Presentation

“Data visualization” can mean many things, from popular press infographics, to maps of voter
turnout or party choice. Here we use this term in the narrower context of statistical analysis. As
such, we refer to an approach to data analysis that focuses on insightful graphical display in the
service of both understanding our data and communicating our results to others.

We may display the raw data, some summary statistics, or some indicators of the quality or
adequacy of a fitted model. The word “insightful” suggests that the goal is (hopefully) to reveal
some aspects of the data that might not be perceived, appreciated, or absorbed by other means. As

3
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in the quote from Keats, the overall aims include both beauty and truth, though each of these are
only as perceived by the beholder.

Methods for visualizing quantitative data have a long history and are now widely used in both
data analysis and in data presentation, and in both popular and scientific media. Graphical methods
for categorical data, however, have only a more recent history, and are consequently not as widely
used. The goal of this book is to show concretely how data visualization may be usefully applied to
categorical data.

“Categorical” means different things in different contexts. We introduce the topic in Section 1.2
with some examples illustrating (a) types of categorical variables: binary, nominal, and ordinal, (b)
data in case form vs. frequency form, (c) frequency data vs. count data, (d) univariate, bivariate, and
multivariate data, and (e) the distinction between explanatory and response variables.

Statistical methods for the analysis of categorical data also fall into two quite different cate-
gories, described and illustrated in Section 1.3: (a) the simple randomization-based methods typified
by the classical Pearson chi-squared (χ2) test, Fisher’s exact test, and Cochran–Mantel–Haenszel
tests, and (b) the model-based methods represented by logistic regression, loglinear, and generalized
linear models. In this book, Chapters 3–6 are mostly related to the randomization-based methods;
Chapters 7–9 illustrate the model-based methods.

In Section 1.4 we describe some important similarities and differences between categorical data
and quantitative data, and discuss the implications of these differences for visualization techniques.
Section 1.4.5 outlines a strategy of data analysis focused on visualization.

In a few cases we show R code or results as illustrations here, but the fuller discussion of using
R for categorical data analysis is postponed to Chapter 2.

1.2 What is categorical data?

A categorical variable is one for which the possible measured or assigned values consist of a dis-
crete set of categories, which may be ordered or unordered. Some typical examples are:

• Gender, with categories “Male,” “Female.”
• Marital status, with categories “Never married,” “Married,” “Separated,” “Divorced,”

“Widowed.”
• Fielding position (in baseball), with categories “Pitcher,” “Catcher,” “1st base,” “2nd

base,” . . ., “Left field.”
• Side effects (in a pharmacological study), with categories “None,” “Skin rash,” “Sleep

disorder,” “Anxiety,” . . ..
• Political attitude, with categories “Left,” “Center,” “Right.”
• Party preference (in Canada), with categories “NDP,” “Liberal,” “Conservative,” “Green.”
• Treatment outcome, with categories “no improvement,” “some improvement,” or “marked

improvement.”
• Age, with categories “0–9,” “10–19,” “20–29,” “30–39,” . . . .
• Number of children, with categories 0, 1, 2, . . . .

As these examples suggest, categorical variables differ in the number of categories: we often
distinguish binary variables (or dichotomous variables) such as Gender from those with more
than two categories (called polytomous variables). For example, Table 1.1 gives data on 4, 526
applicants to graduate departments at the University of California at Berkeley in 1973, classified by
two binary variables, gender and admission status.

Some categorical variables (Political attitude, Treatment outcome) may have
ordered categories (and are called ordinal variables), while others (nominal variables) like Marital
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Table 1.1: Admissions to Berkeley graduate programs

Admitted Rejected Total
Males 1198 1493 2691
Females 557 1278 1835
Total 1755 2771 4526

Table 1.2: Arthritis treatment data

Improvement
Treatment Sex None Some Marked Total

Active Female 6 5 16 27
Male 7 2 5 14

Placebo Female 19 7 6 32
Male 10 0 1 11

Total 42 14 28 84

status have unordered categories.1 For example, Table 1.2 shows a 2×2×3 table of ordered out-
comes (“none,” “some,” or “marked” improvement) to an active treatment for rheumatoid arthritis
compared to a placebo for men and women.

Finally, such variables differ in the fineness or level to which some underlying observation has
been categorized for a particular purpose. From one point of view, all data may be considered
categorical because the precision of measurement is necessarily finite, or an inherently continuous
variable may be recorded only to limited precision.

But this view is not helpful for the applied researcher because it neglects the phrase “for a
particular purpose.” Age, for example, might be treated as a quantitative variable in a study of
native language vocabulary, or as an ordered categorical variable with decade groups (0–10, 11–20,
20–30, . . .) in terms of the efficacy or side-effects of treatment for depression, or even as a binary
variable (“child” vs. “adult”) in an analysis of survival following an epidemic or natural disaster. In
the analysis of data using categorical methods, continuous variables are often recoded into ordered
categories with a small set of categories for some purpose.2

1.2.1 Case form vs. frequency form
In many circumstances, data is recorded on each individual or experimental unit. Data in this form
is called case data, or data in case form. The data in Table 1.2, for example, were derived from the
individual data listed in the data set Arthritis from the vcd package. The following lines show
the first five of N = 84 cases in the Arthritis data,

ID Treatment Sex Age Improved
1 57 Treated Male 27 Some

1An ordinal variable may be defined as one whose categories are unambiguously ordered along a single underlying dimen-
sion. Both marital status and fielding position may be weakly ordered, but not on a single dimension, and not unambiguously.

2This may be a waste of information available in the original variable, and should be done for substantive reasons,
not mere convenience. For example, some researchers unfamiliar with regression methods often perform a “median-split”
on quantitative predictors so they can use ANOVA methods. Doing this precludes the possibility of determining if those
variables have nonlinear relations with the outcome while also decreasing statistical power.
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2 46 Treated Male 29 None
3 77 Treated Male 30 None
4 17 Treated Male 32 Marked
5 36 Treated Male 46 Marked

Whether or not the data variables, and the questions we ask, call for categorical or quantitative
data analysis, when the data are in case form, we can always trace any observation back to its
individual identifier or data record (for example, if the case with ID equal to 57 turns out to be
unusual or noteworthy).

Data in frequency form has already been tabulated, by counting over the categories of the table
variables. The same data shown as a table in Table 1.2 appear in frequency form as shown below.

Treatment Sex Improved Freq
1 Placebo Female None 19
2 Treated Female None 6
3 Placebo Male None 10
4 Treated Male None 7
5 Placebo Female Some 7
6 Treated Female Some 5
7 Placebo Male Some 0
8 Treated Male Some 2
9 Placebo Female Marked 6
10 Treated Female Marked 16
11 Placebo Male Marked 1
12 Treated Male Marked 5

Data in frequency form may be analyzed by methods for quantitative data if there is a quan-
titative response variable (weighting each group by the cell frequency, with a weight variable).
Otherwise, such data are generally best analyzed by methods for categorical data, where statistical
models are often expressed as models for the frequency variable, in the form of an R formula like
Freq ~ ..

In any case, an observation in a data set in frequency form refers to all cases in the cell col-
lectively, and these cannot be identified individually. Data in case form can always be reduced to
frequency form, but the reverse is rarely possible. In Chapter 2, we identify a third format, table
form, which is the R representation of a table like Table 1.2.

1.2.2 Frequency data vs. count data

In many cases the observations representing the classifications of events (or variables) are recorded
from operationally independent experimental units or individuals, typically a sample from some
population. The tabulated data may be called frequency data. The data in Table 1.1 and Table 1.2
are both examples of frequency data because each tabulated observation comes from a different
person.

However, if several events or variables are observed for the same units or individuals, those
events are not operationally independent, and it is useful to use the term count data in this situa-
tion. These terms (following Lindsey (1995)) are by no means standard, but the distinction is often
important, particularly in statistical models for categorical data.

For example, in a tabulation of the number of male children within families (Table 1.3, described
in Section 1.2.3 below), the number of male children in a given family would be a count variable,
taking values 0, 1, 2, . . .. The number of independent families with a given number of male children
is a frequency variable. Count data also arise when we tabulate a sequence of events over time or
under different circumstances in a number of individuals.
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Table 1.3: Number of Males in 6115 Saxony Families of Size 12

Males 0 1 2 3 4 5 6 7 8 9 10 11 12
Families 3 24 104 286 670 1,033 1,343 1,112 829 478 181 45 7

1.2.3 Univariate, bivariate, and multivariate data

Another distinction concerns the number of variables: one, two, or (potentially) many shown in
a data set or table, or used in some analysis. Table 1.1 is an example of a bivariate (two-way)
contingency table and Table 1.2 classifies the observations by three variables. Yet, we will see later
that the Berkeley admissions data also recorded the department to which potential students applied
(giving a three-way table), and in the arthritis data, the age of subjects was also recorded.

Any contingency table (in frequency or table form) therefore records the marginal totals, summed
over all variables not represented in the table. For data in case form, this means simply ignoring (or
not recording) one or more variables; the “observations” remain the same. Data in frequency form,
however, result in smaller tables when any variable is ignored; the “observations” are the cells of
the contingency table. For example, in the Arthritis data, ignoring Sex gives the smaller 2× 3
table for Treatment and Improved.

Treatment Improved Freq
1 Placebo None 29
2 Treated None 13
3 Placebo Some 7
4 Treated Some 7
5 Placebo Marked 7
6 Treated Marked 21

In the limiting case, only one table variable may be recorded or available, giving the categorical
equivalent of univariate data. For example, Table 1.3 gives data on the distribution of the number
of male children in families with 12 children (discussed further in Example 3.2). These data were
part of a large tabulation of the sex distribution of families in Saxony in the 19th century, but the
data in Table 1.3 have only one discrete classification variable, number of males. Without further
information, the only statistical questions concern the form of the distribution. We discuss methods
for fitting and graphing such discrete distributions in Chapter 3. The remaining chapters relate to
bivariate and multivariate data.

1.2.4 Explanatory vs. response variables

Most statistical models make a distinction between response variables (or dependent, or criterion
variables) and explanatory variables (or independent, or predictor variables).

In the standard (classical) linear models for regression and analysis of variance (ANOVA), for
instance, we treat one (or more) variables as responses, to be explained by the other, explanatory
variables. The explanatory variables may be quantitative or categorical (e.g., factors in R). This
affects only the details of how the model is specified or how coefficients are interpreted for lm() or
glm(). In these classical models, the response variable (“treatment outcome,” for example), must
be considered quantitative, and the model attempts to describe how the mean of the distribution of
responses changes with the values or levels of the explanatory variables, such as age or gender.

When the response variable is categorical, however, the standard linear models do not apply,
because they assume a normal (Gaussian) distribution for the model residuals. For example, in
Table 1.2 the response variable is Improvement, and even if numerical scores were assigned to
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the categories “none,” “some,” “marked,” it may be unlikely that the assumptions of the classical
linear models could be met.

Hence, a categorical response variable generally requires analysis using methods for categorical
data, but categorical explanatory variables may be readily handled by either method.

The distinction between response and explanatory variables also becomes important in the use
of loglinear models for frequency tables (described in Chapter 9), where models can be specified in
a simpler way (as equivalent logit models) by focusing on the response variable.

1.3 Strategies for categorical data analysis

Data analysis typically begins with exploratory and graphical methods designed to expose features
of the data, followed by statistical analysis designed to summarize results, answer questions, and
draw conclusions. Statistical methods for the analysis of categorical data can be classified into two
broad categories: those concerned with hypothesis testing per se versus those concerned with model
building.

1.3.1 Hypothesis testing approaches

In many studies, the questions of substantive interest translate readily into questions concerning
hypotheses about association between variables, a more general idea than that of correlation (linear
association) for quantitative variables. If a non-zero association exists, we may wish to characterize
the strength of the association numerically and understand the pattern or nature of the association.

For example, in Table 1.1, a main question is: “Is there evidence of gender-bias in admission
to graduate school?” Another way to frame this: “Are males more likely to be admitted?” These
questions can be expressed in terms of an association between gender and admission status in a
2 × 2 contingency table of applicants classified by these two variables. If there is evidence for
an association, we can assess its strength by a variety of measures, including the difference in
proportions admitted for men and women or the ratio of the odds of admission for men compared
to women, as described in Section 4.2.2.

Similarly, in Table 1.2, questions about the efficacy of the treatment for rheumatoid arthritis can
be answered in terms of hypotheses about the associations among the table variables: Treatment,
Sex, and the Improvement categories. Although the main concern might be focused on the
overall association between Treatment and Improvement, one would also wish to know if
this association is the same for men and women. A stratified analysis (Section 4.3) controls for
the effects of background variables like Sex, tests for homogeneity of association, and helps to
determine if these associations are equal.

Questions involving tests of such hypotheses are answered most easily using a large variety
of specific statistical tests, often based on randomization arguments. These include the familiar
Pearson chi-squared test for two-way tables, the Cochran–Mantel–Haenszel test statistics, Fisher’s
exact test, and a wide range of measures of strength of association. These tests make minimal
assumptions, principally requiring that subjects or experimental units have been randomly assigned
to the categories of experimental factors. The hypothesis testing approach is illustrated in Chapters
4–6, though the emphasis is on graphical methods that help us to understand the nature of association
between variables.

EXAMPLE 1.1: Hair color and eye color
The data set HairEye below records data on the relationship between hair color and eye color

in a sample of nearly 600 students.
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Figure 1.1: Graphical displays for the hair color and eye color data. Left: mosaic display; right:
correspondence analysis plot.

Eye
Hair Brown Blue Hazel Green
Black 68 20 15 5
Brown 119 84 54 29
Red 26 17 14 14
Blond 7 94 10 16

The standard analysis (with chisq.test() or assocstats()) gives a Pearson χ2 of 138.3
with nine degrees of freedom, indicating substantial departure from independence. Among the mea-
sures of strength of association, Cramer’s V, V =

√
χ2/N min(r − 1, c− 1) = 0.279, indicates a

substantial relationship between hair and eye color.3

X^2 df P(> X^2)
Likelihood Ratio 146.44 9 0
Pearson 138.29 9 0

Phi-Coefficient : NA
Contingency Coeff.: 0.435
Cramer's V : 0.279

The further (and perhaps more interesting question) is how do we understand the nature of this
association between hair and eye color? Two graphical methods related to the hypothesis testing
approach are shown in Figure 1.1.

The left panel of Figure 1.1 is a mosaic display (Chapter 5), constructed so that the size of each
rectangle is proportional to the observed cell frequency. The shading reflects the cell contribution
to the χ2 statistic—shades of blue when the observed frequency is substantially greater than the
expected frequency under independence, shades of red when the observed frequency is substantially
less, as shown in the legend.

The right panel of this figure shows the results of a correspondence analysis (Chapter 6), where
the deviations of the hair color and eye color points from the origin accounts for as much of the χ2

as possible in two dimensions.

3Cramer’s V varies from 0 (no association) to 1 (perfect association).
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We observe that both the hair colors and the eye colors are ordered from dark to light in the
mosaic display and along Dimension 1 in the correspondence analysis plot. The deviations between
observed and expected frequencies have an opposite-corner pattern in the mosaic display, except for
the combination of red hair and green eyes, which also stand out as the largest values on Dimension
2 in the Correspondence analysis plot. Displays such as these provide a means to understand how
the variables are related. 4

1.3.2 Model building approaches
Model-based methods provide tests of equivalent hypotheses about associations, but offer additional
advantages (at the cost of additional assumptions) not provided by the simpler hypotheses-testing
approaches. Among these advantages, model-based methods provide estimates, standard errors and
confidence intervals for parameters, and the ability to obtain predicted (fitted/expected) values with
associated measures of precision.

We illustrate this approach here for a dichotomous response variable, where it is often convenient
to construct a model relating a function of the probability, π, of one event to a linear combination
of the explanatory variables. Logistic regression uses the logit function,

logit(π) ≡ loge

(
π

1− π

)
,

which may be interpreted as the log odds of the given event. A linear logistic model can then be
expressed as

logit(π) = β0 + β1x1 + β2x2 + . . .

Statistical inferences from model-based methods provide tests of hypotheses for the effects of
the predictors, x1, x2, . . ., but they also provide estimates of parameters in the model, β1, β2, . . . and
associated confidence intervals. Standard modeling tools allow us to graphically display the fitted
response surface (with confidence or prediction intervals) and even to extrapolate these predictions
beyond the given data. A particular advantage of the logit representation in the logistic regression
model is that estimates of odds ratios (Section 4.2.2) may be obtained directly from the parameter
estimates.

EXAMPLE 1.2: Space shuttle disaster
To illustrate the model-based approach, the graph in Figure 1.2 is based on a logistic regression

model predicting the probability of a failure in one of the O-ring seals used in the 24 NASA space
shuttles prior to the disastrous launch of the Challenger in January, 1986. The explanatory variable
is the ambient temperature (in Fahrenheit) at the time of the flight. The sad story behind these data,
and the lessons to be learned for graphical data display, are related in Example 1.10.

Here, we simply note that the fitted model, shown by the solid line in Figure 1.2, corresponds to
the prediction equation (with standard errors shown in parentheses),

logit(Failure) = 5.09
(3.06)

− 0.116
(0.047)

Temperature

A hypothesis test that failure probability is unassociated with temperature is equivalent to the test
that the coefficient for temperature in this model equals 0; this test has a p-value of 0.014, convincing
evidence for rejection.

The parameter estimate for temperature, −0.116, however, gives more information. Each 1◦

increase in temperature decreases the log odds of failure by 0.116, with 95% confidence interval
[−0.208,−0.0235]. The equivalent odds ratio is exp(−0.116) = 0.891 [0.812, 0.977]. Equiva-
lently, a 10◦ decrease in temperature corresponds to an odds ratio of a failure of exp(10×0.116) =
3.18, more than tripling the odds of a failure.
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Figure 1.2: Space shuttle O-ring failure, observed and predicted probabilities. The dotted vertical
line at 31◦ shows the prediction for the launch of the Challenger.

When the Challenger was launched, the temperature was only 31◦. The shaded region in Fig-
ure 1.2 shows 95% prediction intervals for failure probability. All previous shuttles (shown by the
points in the figure) had been launched at much warmer temperatures, so the prediction interval
(the dashed vertical line) at 31◦ represents a considerable extrapolation beyond the available data.
Nonetheless, the model building approach does provide such predictions along with measures of
their uncertainty. Figure 1.2 is a graph that might have saved lives.

4

EXAMPLE 1.3: Donner Party
In April–May of 1846 (three years before the California gold rush), the Donner and Reed fam-

ilies set out for California from the American Mid-west in a wagon train to seek a new life and
perhaps their fortune in the new American frontier. By mid-July, a large group had reached a site
in present-day Wyoming; George Donner was elected to lead what was to be called the “Donner
Party,” which eventually numbered 87 people in 23 wagons, along with their oxen, cattle, horses,
and worldly possessions.

They were determined to reach California as quickly as possible. Lansford Hastings, a self-
proclaimed trailblazer (retrospectively, of dubious distinction), proposed that the party follow him
through a shorter path through the Wasatch Mountains. Their choice of “Hastings’s Cutoff” proved
disastrous: Hastings had never actually crossed that route himself, and the winter of of 1846 was to
be one of the worst on record.

In October, 1846, heavy snow stranded them in the eastern Sierra Nevada, just to the east of a
pass that bears their name today. The party made numerous attempts to seek rescue, most turned
back by blizzard conditions. Relief parties in March–April 1847 rescued 40, but discovered grisly
evidence that those who survived had cannibalized those who died.

Here we briefly examine how statistical models and graphical evidence can shed light on the
question of who survived in the Donner party.

Figure 1.3 is an example of what we call a data-centric, model-based graph of a discrete (binary)
outcome: lived (1) versus died (0). That is, it shows both the data and a statistical summary based
on a fitted statistical model. The statistical model provides a smoothing of the discrete data.

The jittered points at the top and bottom of the graph show survival in relation to age of the
person. You can see that there were more people who survived among the young, and more who
died among the old. The blue curve in the plot shows the fitted probability of survival from a
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Figure 1.3: Donner party data, showing the relationship between age and survival. The blue curve
and confidence band give the predicted probability of survival from a linear logistic regression
model.

linear logistic regression model for these data with a 95% confidence band for the predictions. The
prediction equation for this model can be given as:

logit(survived) = 0.868
(0.372)

− 0.0353
(0.015)

age

The equation above implies that the log odds of survival decreases by 0.0352 with each addi-
tional year of age or by 10 × 0.0352 = 0.352 for an additional decade. Another way to say this
is that the odds of survival is multiplied by exp(0.353) = .702 with each 10 years of age, a 30%
decrease.

Of course, these visual and statistical summaries depend on the validity of the fitted model. For
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Figure 1.4: Donner party data, showing other model-based smoothers for the relationship between
age and survival. Left: using a natural spline; right: using a non-parametric loess smoother.
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contrast, Figure 1.4 shows two other model-based smoothers that relax the assumption of the linear
logistic regression model. The left panel shows the result of fitting a semi-parametric model with a
natural cubic spline with one more degree of freedom than the linear logistic model. The right panel
shows the fitted curve for a non-parametric, locally weighted scatterplot smoothing (loess) model.
Both of these hint that the relationship of survival to age is more complex than what is captured in
the linear logistic regression model. We return to these data in Chapter 7.

4

1.4 Graphical methods for categorical data

You can see a lot, just by looking

Yogi Berra

The graphical methods for categorical data described in this book are in some cases straightfor-
ward adaptations of more familiar visualization techniques developed for quantitative data. Graph-
ical principles and strategies, and the relations between the visualization approach and traditional
statistical methods, are described in a number of sources, including Chambers et al. (1983), Cleve-
land (1993b), and several influential books by Tufte (Tufte, 1983, 1990, 1997, 2006).

The fundamental idea of statistical graphics as a comprehensive system of visual signs and
symbols with a grammar and semantics was first proposed in Jacques Bertin’s Semiology of Graph-
ics (1983). These ideas were later extended to a computational theory in Wilkinson’s Grammar
of Graphics (2005), and implemented in R in Hadley Wickham’s ggplot2 (Wickham and Chang,
2015) package (Wickham, 2009, Wickham and Chang, 2015).

Another perspective on visual data display is presented in Section 1.4.1 focusing on the commu-
nication goals of statistical graphics. However, the discrete nature of categorical data implies that
some familiar graphic methods need to be adapted, while in other cases we require a new graphic
metaphor for data display. These issues are illustrated in Section 1.4.2. Section 1.4.3 discusses the
principle of effect ordering for categorical variables in graphs and tables.

1.4.1 Goals and design principles for visual data display

Designing good graphics is surely an art, but as surely, it is one that ought to be informed by science.
In constructing a graph, quantitative and qualitative information is encoded by visual features, such
as position, size, texture, symbols, and color. This translation is reversed when a person studies a
graph. The representation of numerical magnitude and categorical grouping, and the apperception
of patterns and their meaning, must be extracted from the visual display.

There are many views of graphs, of graphical perception, and of the roles of data visualization
in discovering and communicating information. On the one hand, one may regard a graphical
display as a stimulus—a package of information to be conveyed to an idealized observer. From
this perspective certain questions are of interest: which form or graphic aspect promotes greater
accuracy or speed of judgment (for a particular task or question)? What aspects lead to greatest
memorability or impact? Cleveland (Cleveland and McGill, 1984, 1985, Cleveland, 1993a), Spence
and Lewandowsky (Lewandowsky and Spence, 1989, Spence, 1990, Spence and Lewandowsky,
1990) have made important contributions to our understanding of these aspects of graphical display.

An alternative view regards a graphical display as an act of communication—like a narrative,
or even a poetic text or work of art. This perspective places the greatest emphasis on the desired
communication goal, and judges the effectiveness of a graphical display in how well that goal is
achieved (Friendly and Kwan, 2011). Kosslyn (1985, 1989) and Tufte (1983, 1990, 1997) have
articulated this perspective most clearly.
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Figure 1.5: Different communication purposes require different graphs. For presentations,
a single, carefully crafted graph may appeal best to a large audience; for exploratory anal-
ysis, many related images from different perspectives for a narrow audience (often you!).
Source: Adapted from a blog entry by Martin Theus, http://www.theusrus.de/blog/
presentation-vs-exploration/.

In this view, an effective graphical display, like good writing, requires an understanding of its
purpose—what aspects of the data are to be communicated to the viewer. In writing we communi-
cate most effectively when we know our audience and tailor the message appropriately. So too, we
may construct a graph in different ways to: (a) use ourselves, (b) present at a conference or meet-
ing of our colleagues, (c) publish in a research report, or (d) communicate to a general audience
(Friendly (1991, Ch. 1), Friendly and Kwan (2011)). Figure 1.5 illustrates a basic contrast between
graphs for presentation purposes, designed to appeal persuasively to a large audience (one-to-many)
and the use of perhaps many graphs we might make for ourselves for exploratory data analysis
(many-to-one).

Figure 1.6 shows one organization of visualization methods in terms of the primary use or

Basic functions of data display

Data Display

Perception

Detection

Comparison

Exposition

Reconnaisance

Exploration

Diagnosis
Model building

Aesthetics

Rhetoric

to Simulate

to Persuade

to Inform

Presentation Goal Design PrinciplesPrimary Use

Analysis

Presentation

Figure 1.6: A taxonomy of the basic functions of data display by intended use, presentation goal,
and design principles.

http://www.theusrus.de/blog/presentation-vs-exploration/
http://www.theusrus.de/blog/presentation-vs-exploration/
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intended communication goal, the functional presentation goal, and suggested corresponding design
principles.

We illustrate these ideas and distinctions in the examples below, most of which are treated again
in later chapters.

EXAMPLE 1.4: Racial profiling: Arrests for marijuana possession
In a case study that will be examined in detail in Chapter 7 (Example 7.10), the Toronto Star

newspaper studied a huge data base of arrest records by Toronto police for indications of possible
racial profiling, i.e., differential treatment of those arrested on the basis of skin color. They focused
on the charge of simple possession of a small amount of marijuana, for which enforcement proce-
dures allowed police discretion. An officer could release an arrestee with a summons (“Form 9”)
to appear in court, or take the person to a police station for questioning (“Form 10”) or booking
(“Form 11.1”), or order the person held in jail for a bail hearing (“Show cause”).

The statistical issue was whether the data on these arrests showed evidence of differential treat-
ment in relation to skin color, particularly in the treatment of blacks vs. whites, controlling, of
course, for other factors. Statistical tests on these data (χ2 tests, loglinear models, logistic regres-
sion) showed overwhelming evidence of differential treatment of blacks and whites. However, tables
of these results do not reveal the nature of this association.

Figure 1.7 is an example of a graph designed for analysis—a mosaic display (Chapter 5) show-
ing the frequencies of those arrested on this charge by skin color and release type. The size of each
rectangle shows the frequency and these are shaded in relation to the asociation between skin color
and release—blue for positive associations (more than expected if they were independent) to red for
negative associations.

White kcalBrehtOnworB

Skin_Colour

Fo
rm

9
esua

C
wohS

1.11
mroF

01
mroF

R
el

ea
se

s_
Ty

pe

Figure 1.7: Analysis graph: A mosaic display showing the relationship between skin color and
release type for those arrested on a charge of simple possession of marijuana in Toronto, 1996–
2002.



16 1. Introduction

Figure 1.8: Redesign of Figure 1.7 as a presentation graphic. Source: Graphics department, The
Toronto Star, December 11, 2002. Used by permission.

Once you know how to read such graphs, the pattern is clear: blacks were indeed more likely
to be held for more severe treatment, whites were more likely to be released with a summons. But
this is hardly a graph that would be clear to a general audience, and would require a good deal of
explanation.

In contrast, Figure 1.8 shows a redesign of this as a presentation graphic prepared by the Star
and published on December 11, 2002 in conjunction with a meeting between the newspaper and
the Toronto Police Services Board to consider the issue of racial profiling. The police vehemently
denied that racial profiling was taking place. The revision makes the point immediately obvious and
compelling in the following ways:

• It announces the conclusion in the figure title: “Same charge, different treatment.”
• The text box at the top provides the context for this conclusion.
• Skin colors “Brown” and “Other,” which appeared less frequently, were removed, and the re-

lease categories “Form 10” and “Form 11.1” were combined as “released at station.”
• The graphic is still a mosaic display, however, it now shows explicitly the number of charges

laid against whites and blacks and the percentage of each treatment.
• The labels for whites and blacks were enhanced by indicating what a reader should see for each.
• The legend for color is titled non-technically as “degree of likelihood.”

Clear communication is not achieved without effort. The revised graph required several itera-
tions and emails between the graphic designer and the statistical consultant (the first author of this
book) in the few hours available before the newspaper went to press. The main question was, “what
are we trying to show here?” Starting with the original Figure 1.7 mosaic, we asked, “what can we
remove?” and “what can we add?” to make the message clearer.

4
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1.4.2 Categorical data require different graphical methods

We mentioned earlier, and will see in greater detail in Chapter 7 and Chapter 9, that statistical
models for discrete response data and for frequency data are close analogs of the linear regression
and ANOVA models used for quantitative data. These analogies suggest that the graphical methods
commonly used for quantitative data may be adapted directly to categorical data.

Happily, it turns out that many of the analysis graphs and diagnostic displays (e.g., effect plots,
influence plots, added variable and partial residual plots, etc.) that have become common adjuncts in
the analysis of quantitative data have been extended to generalized linear models including logistic
regression (Section 7.5) and loglinear models (Section 11.6).

Unhappily, the familiar techniques for displaying raw data are often disappointing when applied
to categorical data. The simple scatterplot, for example, widely used to show the relation between
quantitative response and predictors, when applied to discrete variables, gives a display of the cate-
gory combinations, with all identical values overplotted, and no representation of their frequency.

Instead, frequencies of categorical variables are often best represented graphically using areas
rather than as position along a scale. Friendly (1995) describes conceptual and statistical models
that give a rationale for this graphic representation. Figure 1.7 does this in the form of a modified
bar chart (mosaic plot), where the widths of the horizontal bars show the proportions of whites
and blacks in the data, and the divisions of each group give the percents of each release type.
Consequently, the areas of each bar are proportional to the frequency in the cells of this 2× 3 table.

As we describe later in this book, using the visual attribute

area ∼ frequency

also allows creating novel graphical displays of frequency data for special circumstances.
Figure 1.9 shows two examples. The left panel gives a fourfold display of the frequencies of

admission and gender in the Berkeley data shown in Table 1.1. What should be seen at a glance is
that males are more often admitted and females more often rejected (shaded blue); see Section 4.4
for details.
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Figure 1.9: Frequencies of categorical variables shown as areas. Left: fourfold display of the
relation between gender and admission in the Berkeley data; right: agreement plot for two raters
assessing mammograms.
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The right panel shows another specialized display, an agreement chart designed to show the
strength of agreement in a square table for two raters (see Section 4.7.2). The example here (Ex-
ample 4.18) concerns agreement of ratings of breast cancer from mammograms by two raters. The
dark squares along the diagonal show exact agreement; the lighter diagonal rectangles allow 1-off
agreement, and both are shown in relation to chance agreement (diagonal enclosing rectangles).
What should be seen at a glance is that exact agreement is moderately strong and extremely strong
if you allow the raters to differ by one rating category.

1.4.3 Effect ordering and rendering for data display
In plots of quantitative variables, standard methods (histograms, scatterplots) automatically posi-
tion values along ordered scales, facilitating comparison (“which is less/more?”) and detection of
patterns, trends, and anomalies. However, by its nature, categorical data involves discrete variables
such as education level, hair color, geographic region (state or province), or preference for a polit-
ical party. With alphabetic labels for ordered categories (e.g., education: Low, Medium, High), it
is unfortunately all too easy to end up with a nonsensical display with the categories ordered High,
Low, Medium. Geographic regions (U.S. states) are often ordered alphabetically by default as are
the names of political parties and other categorical variables. This may be useful for lookup, but for
the purposes of comparison and detection, this is almost always a bad idea.

Instead, Friendly and Kwan (2003) proposed the principle of effect-order sorting for visual
displays (tables as well as graphs):

sort the data by the effects to be seen to facilitate comparison

For quantitative data, this is often achieved by sorting the data according to means or medians of
row and column factors, called main-effect ordering. For categorical data, graphs and tables are
often most effective when the categories are arranged in an order reflecting their association, called
association ordering.

Another important principle concerns the rendering of visual attributes of elements in graphical
displays (Friendly, 2002). For example, categorical variables in plots (and tables) can be distin-
guished by any one or more of color, size, shape, or font. The examples below show the use of color
to illustrate the precept:

render the data by the effects to be seen to facilitate detection

EXAMPLE 1.5: British social mobility
Bishop et al. (1975, p. 100) analyzed data on the occupations of 3500 British fathers and their

sons from a study by Glass (1954), with five occupational categories: Professional, Managerial,
Supervisory, Skilled manual, and Unskilled manual.

One would expect, of course, a strong association between a son’s occupation and that of his
father—the apple doesn’t fall very far from the tree. Mosaic plots (detailed in Chapter 5) provide a
natural way to show such relationships. Figure 1.10 shows two such plots. The left panel shows the
result obtained when the table variables father and son are read as factors, and therefore ordered
alphabetically by default. It is difficult to see any overall pattern, except for the large values in the
diagonal cells (shaded blue) corresponding to equal occupational status.

In the right panel, the categories have been arranged in decreasing order of occupational status
to show the association according to status. Now you can see a global pattern of shading color,
where the tiles become increasingly red as one moves away from the main diagonal, reflecting a
greater difference between the occupation of the father and son. The interpretation here is that most
sons remain in their father’s occupational class, but when they differ, there is little mobility across
large steps.

In this example, father and son are clearly ordinal variables and should be treated as such
in both graphs and statistical models. Correspondence analysis (Chapter 6) provides a natural way
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Figure 1.10: Mosaic plots for Glass’ mobility table of occupational status. In these displays the area
of each tile is proportional to frequency and shading color shows the departure from independence,
using blue for positive, red for negative association. Left: default alphabetic ordering of categories;
right: occupational categories ordered by status.

to depict association by assigning scores to the categories to optimally represent their relationships.
Loglinear models provide special methods for ordinal variables (Section 10.1) and square frequency
tables (Section 10.2).

4

The ideas of effect ordering and rendering with color shading to enhance perception can also be
used in tabular displays, as illustrated in the next example.

EXAMPLE 1.6: Barley data
The classic barley dataset (in lattice (Sarkar, 2015)) from Immer et al. (1934) gives a 10 ×

2× 6 table of yields of 10 varieties of barley in two years (1931, 1932) planted at 6 different sites in
Minnesota. Cleveland (1993b) and many others have used this data to illustrate graphical methods,
and one surprising finding not revealed in standard tabular displays is that the data for one site
(Morris) may have had the values for 1931 and 1932 switched.4

To focus attention on this suspicious effect in a tabular display, you can calculate the yield
difference ∆yij = yij,1931 − yij,1932. Table 1.4 shows these values in a 10× 6 table with the rows
and columns sorted by their means (main-effect ordering). In addition, the table cells have been
colored according to the sign and magnitude of the year difference. The shading scheme uses blue
for large positive values and red for large negative values, with a white background for intermediate
values. The shading intensity values were determined as |∆yij | > {2, 3} × σ̂(∆yij).

Effect ordering and color rendering have the result of revealing a new effect, shown as a regular
progression in the body of the table. The negative values for Morris now immediately stand out. In
addition, the largely positive other values show a lower-triangular pattern, with the size of the yield

4This canonical story, like many others in statistics and graphics lore, turns out to be apocryphal on closer ex-
amination. Wright (2013) recently took a closer look at the original data and gives an expanded data set as
minnesota.barley.yield in the agridat (Wright, 2015) package. With a wider range of years (1927–1936), other
local effects like weather had a greater impact than the overall year effects seen in 1931–1932, and the results for the Morris
site no longer stand out as surprising.
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Table 1.4: Barley data, yield differences, 1931-1932, sorted by mean difference, and shaded by
value

Site
Variety Morris Duluth

University
Farm

Grand
Rapids Waseca Crookston Mean

No. 475 -22 6 -5 4 6 12 0.1
Wisconsin No. 38 -18 2 1 14 1 14 2.4
Velvet -13 4 13 -9 13 9 2.9
Peatland -13 1 5 8 13 16 4.8
Manchuria -7 6 0 11 15 7 5.5
Trebi -3 3 7 9 15 5 6.1
Svansota -9 3 8 13 9 20 7.3
No. 462 -17 6 11 5 21 18 7.4
Glabron -6 4 6 15 17 12 8.0
No. 457 -15 11 17 13 16 11 8.8

Mean -12.2 4.6 6.3 8.2 12.5 12.5 5.3

difference increasing with both row and column means. Against this background, one other cell, for
Velvet grown at Grand Rapids, stands out with an anomalous negative value.

Although the use of color for graphs is now more common in some journals, color and other
rendering details in tables are still difficult. The published version of Table 1.4 (Friendly and Kwan,
2003, Table 3) was forced to use only font shape (normal, italics) to distinguish positive and negative
values.

4

Finally, effect ordering is also usefully applied to the variables in multivariate data sets, which
by default, are often ordered in data displays according to their position in a data frame or alphabet-
ically.

EXAMPLE 1.7: Iris data
The classic iris data set (Anderson, 1935, Fisher, 1936b) gives the measurements in centime-

ters of the variables sepal length and width and petal length and width, respectively, for 50 flowers
from each of 3 species of iris, Iris setosa, versicolor, and virginica. Such multivariate data are often
displayed in parallel coordinate plots, using a separate vertical axis for each variable, scaled from
its minimum to maximum.

The default plot, with variables shown in their data frame order, is shown in the left panel of
Figure 1.11, and gives rise to the epithet spaghetti plot for such displays because of the large number
of line crossings. This feature arises because one variable, sepal width, has negative relations in the
species means with the other variables. Simple rearrangement of the variables to put sepal width
last (or first) makes the relations among the species and the variables more apparent, as shown in
the right panel of Figure 1.11. This plot has also been enhanced by using alpha-blending (partial
transparency) of thicker lines, so that the density of lines is more apparent.

Parallel coordinate plots for categorical data are discussed in an online supplement on the web
site for the book. A general method for reordering variables in multivariate data visualizations based
on cluster analysis was proposed by Hurley (2004).

4
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Figure 1.11: Parallel coordinates plots of the Iris data. Left: Default variable order; right: Variables
ordered to make the pattern of correlations more coherent.

1.4.4 Interactive and dynamic graphics
Graphics displayed in print form, such as this book, are necessarily static and fixed at the time they
are designed and rendered as an image. Yet, recent developments in software, web technology and
media alternative to print have created the possibility to extend graphics in far more useful and
interesting ways, for both presentation and analysis purposes.

Interactive graphics allow the viewer to directly manipulate the statistical and visual compo-
nents of graphical display. These range from

• graphical controls (sliders, selection boxes, and other widgets) to control details of an analysis
(e.g., a smoothing parameter) or graph (colors and other graphic details), to

• higher-level interaction including zooming in or out, drilling down to a data subset, linking
multiple displays, selecting terms in a model, and so forth.

The important effect is that the analysis and/or display is immediately re-computed and updated
visually.

In addition, dynamic graphics use animation to show a series of views, as frames in a movie.
Adding time as an additional dimension allows far more possibilities, for example showing a rotat-
ing view of a 3D graph or showing smooth transitions or interpolations from one view to another.

There are now many packages in R providing interactive and dynamic plots (e.g., rggobi (Tem-
ple Lang et al., 2014), iplots (Urbanek and Wichtrey, 2013)) as well as capabilities to incorporate
these into interactive documents, presentations, and web pages (e.g., rCharts (Vaidyanathan, 2013),
googleVis (Gesmann and de Castillo, 2015), ggvis (Chang and Wickham, 2015)). The anima-
tion (Xie, 2014) package facilitates creating animated graphics and movies in a variety of formats.
The RStudio editor and development environment5 provides its own manipulate (RStudio, Inc.,
2011) package, as well as the shiny (RStudio, Inc., 2015) framework for developing interactive R
web applications.

EXAMPLE 1.8: 512 paths to the White House
Shortly before the 2012 U.S. presidential election (November 2, 2012) The New York Times

5http://www.rstudio.com.

http://www.rstudio.com
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Figure 1.12: 512 paths to the White House. This interactive graphic allows the viewer to select a
winner in any one or more of the nine most highly contested U.S. states and highlights the number
of paths leading to a win by Obama or Romney, sorted and weighted by the number of Electoral
College votes. Source: Mike Bostock & Shan Carter, New York Times interactive, November 2,
2012. Used by permission.

published an interactive graphic,6 designed by Mike Bostock and Shan Carter,7 showing the effect
that a win for Barack Obama or Mitt Romney in the nine most highly contested states would have
on the chances that either candidate would win the presidency.

With these nine states in play there are 29 = 512 possible outcomes, each with a different
number of votes in the Electorial College. In Figure 1.12, a win for Obama in Florida and Virginia
was selected, with wins for Romney in Ohio and North Carolina. Most other selections also lead to
a win by Obama, but those with the most votes are made most visible at the top. An R version of
this chart was created using the rCharts package.8 The design of this graphic as a binary tree was
chosen here, but another possibility would be a treemap graphic (Shneiderman, 1992) or a mosaic
plot.

4

1.4.5 Visualization = Graphing + Fitting + Graphing . . .

Look here, upon this picture, and on this.

Shakespeare, Hamlet

Statistical summaries, hypothesis tests, and the numerical parameters derived in fitted models

6http://www.nytimes.com/interactive/2012/11/02/us/politics/
paths-to-the-white-house.html.

7see: https://source.opennews.org/en-US/articles/nyts-512-paths-white-house/. for a
description of their design process.

8http://timelyportfolio.github.io/rCharts_512paths/.

http://www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
https://source.opennews.org/en-US/articles/nyts-512-paths-white-house/
http://timelyportfolio.github.io/rCharts_512paths/
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are designed to capture a particular feature of the data. A quick analysis of the data from Ta-
ble 1.1, for example, shows that 1198/2691 = 44.5% of male applicants were admitted, compared
to 557/1835 = 30.4% of female applicants.

Statistical tests give a Pearson χ2 of 92.2 with 1 degree of freedom for association between
admission and gender (p < 0.001), and various measures for the strength of association. Expressed
in terms of the odds ratio, males were apparently 1.84 times as likely to be admitted as females, with
99% confidence bounds (1.56, 2.17). Each of these numbers expresses some part of the relationship
between gender and admission in the Berkeley data. Numerical summaries such as these are each
designed to compress the information in the data, focusing on some particular feature.

In contrast, the visualization approach to data analysis is designed to (a) expose information and
structure in the data, (b) supplement the information available from numerical summaries, and (c)
suggest more adequate models. In general, the visualization approach seeks to serve the needs of
both summarization and exposure.

This approach recognizes that both data analysis and graphing are iterative processes. You
should not expect that any one model captures all features of the data, any more than we should
expect that a single graph shows all that may be seen. In most cases, your initial steps should
include some graphical display guided by understanding of the subject matter of the data. What you
learn from a graph may then help suggest features of the data to be incorporated into a fitted model.
Your desire to ensure that the fitted model is an adequate summary may then lead to additional
graphs.

The precept here is that

Visualization = Graphing + Fitting + Graphing . . .

where the ellipsis indicates the often iterative nature of this process. Even for descriptive purposes,
an initial fit of salient features can be removed from the data, giving residuals (departures from a
model). Displaying the residuals may then suggest additional features to account for.

Simple examples of this idea include detrending time series graphs to remove overall and sea-
sonal effects and plots of residuals from main-effect models for ANOVA designs. For categorical
data, mosaic plots (Chapter 5) display the unaccounted-for association between variables by shad-
ing, as in Figure 1.10. Additional models and plots considered in Section 10.2 can reveal additional
structure in square tables beyond the obvious effect that sons tend most often to follow in their
fathers’ footsteps.

EXAMPLE 1.9: Donner Party
The graphs in Figure 1.3 and Figure 1.4 suggest three different initial descriptions for survival in

the Donner party. Yet they ignore all other influences, of which gender and family structure might
also be important. A more complete understanding of this data can be achieved by taking these
effects into account, both in fitted models and graphs. See Example 7.9 for a continuation of this
story. 4

EXAMPLE 1.10: Space shuttle disaster
The space shuttle Challenger mentioned in Example 1.2 exploded 73 seconds after take-off on

January 28, 1986. Subsequent investigation presented to the presidential commission headed by
William Rogers determined that the cause was failure of the O-ring seals used to isolate the fuel
supply from burning gases. The story behind the Challenger disaster is perhaps the most poignant
missed opportunity in the history of statistical graphics. See Tufte (1997) for a complete exposition.
It may be heartbreaking to find out that some important information was there, but the graphmaker
missed it.

Engineers from Morton Thiokol, manufacturers of the rocket motors, had been worried about
the effects of unseasonably cold weather on the O-ring seals and recommended aborting the flight.
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Figure 1.13: NASA Space Shuttle pre-launch graph prepared by the engineers at Morton Thiokol.

NASA staff analyzed the data, tables, and charts submitted by the engineers and concluded that
there was insufficient evidence to cancel the flight.

The data relating O-ring failures to temperature were depicted as in Figure 1.13, our candidate
for the most misleading graph in history. There had been 23 previous launches of these rockets
giving data on the number of O-rings (out of 6) that were seen to have suffered some damage or
failure. However, the engineers omitted the observations where no O-rings failed or showed signs
of damage, believing that they were uninformative.

Examination of this graph seemed to indicate that there was no relation between ambient tem-
perature and failure. Thus, the decision to launch the Challenger was made, in spite of the initial
concerns of the Morton Thiokol engineers. Unfortunately, those observations had occurred when
the launch temperature was relatively warm (65−−80◦F.) and were indeed informative. The cold-
est temperature at any previous launch was 53◦; when Challenger was launched on January 28, the
temperature was a frigid 31◦.

These data have been analyzed extensively (Dalal et al., 1989, Lavine, 1991). Tufte (1997) gives
a thorough and convincing visual analysis of the evidence available prior to the launch. We consider
statistical analysis of these data in Chapter 7, Example 7.4.

But, what if the engineers had simply made a better graph? At the very least, that would entail (a)
drawing a smoothed curve to fit the points (to show the trend), and (b) removing the background grid
lines (which obscure the data). Figure 1.14 shows a revised version of the same graph, highlighting
the non-zero observations and adding a simple quadratic curve to allow for a possible nonlinear
relationship. For comparison, the excluded zero observations are also shown in grey. This plot, even
showing only the non-zero points, should have caused any engineer to conclude that either: (a) the
data were wrong, or (b) there were excessive risks associated with both high and low temperatures.
But it is well-known that brittleness of the rubber used in the O-rings is inversely proportional to
temperature cubed, so prudent interest might have focussed on the first possibility.9

9A coda to this story shows the role of visual explanation in practice as well (Tufte, 1997, pp. 50–53). The Rogers Com-
mission contracted the reknowned theoretical physicist Richard Feynman to contribute to their investigation. He determined
that the most probable cause of the shuttle failure was the lack of resiliancy of the rubber O-rings at low temperature. But
how could he make this point convincingly? At a televised public hearing, he took a piece of the O-ring material, squeezed
it in a C-clamp, and plunged it into a glass of ice water. After a few minutes, he released the clamp, and the rubber did not
spring back to shape. He mildly said, “... there is no resilience in this particular material when it is at a temperature of 32
degrees. I believe this has some significance for our problem” (Feynman, 1988).
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Figure 1.14: Re-drawn version of the NASA pre-launch graph, showing the locations of the ex-
cluded observations and with fitted quadratics for both sets of observations.

4

1.4.6 Data plots, model plots, and data+model plots
In this book, we use hundreds of graphs to illustrate aspects of discrete data, methods of analysis,
and plots for understanding and explaining results. In addition to the overview of goals and design
principles (Section 1.4.1) shown in Figure 1.6, another classification of such graphs is useful to bear
in mind as you read this book. We distinguish three kinds of plots:

• Data plots: these are well-known. They help answer questions like: (a) What do the data look
like? (b) Are there unusual features? (c) What kinds of summaries would be useful?

An immediate (but bad) example is the plot of failures of O-rings against temperature in Fig-
ure 1.13. Many other examples appear throughout Chapter 3, using barplots for discrete distri-
butions, and Chapter 4, using various graphic forms to display frequencies in two-way tables.

• Model plots: these are less well-known as such, but also help answer important questions:
(a) What does the model “look” like? (plot predicted values); (b) How does the model change
when its parameters change? (plot competing models); (c) How does the model change when
the data is changed? (e.g., influence plots).

Models are simplified descriptions of data. In Section 5.8 we use mosaic plots to show what
loglinear models “look like” (e.g., Figure 5.31). Plots for correspondence analysis methods
(Chapter 6) show the relationships among table variables as fitted points in a two-dimensional
space.
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Effect plots (Section 7.3.3) show fitted values for logistic regression models. Models for ordinal
variables in terms of log odds ratios (Section 10.1.2) can also be illustrated in terms of simple
models plots (Figure 10.4).

• Data + Model plots combine these features, and lead to other questions: (a) How well does
a model fit the data? (b) Does a model fit uniformly good or bad, or just good/bad in some
regions? (c) How can a model be improved? (d) Model uncertainty: show confidence/prediction
intervals or regions. (e) Data support: where is data too “thin” to make a difference in competing
models?

Figure 1.2 and Figure 1.3, Figure 1.4 show several data+model plots for the space shuttle and
Donner data respectively, both showing confidence bands for predicted values. Figure 1.14 is
an another example, comparing two models for the space shuttle data. The model-building
methods described in Chapter 7–Chapter 11 make frequent use of data+model plots.

1.4.7 The 80–20 rule
The Italian economist Vilfredo Pareto observed in 1906 that 80% of the land in Italy was owned by
20% of the population and this ratio also applied in other countries. It also applied to the yield of
peas from peapods in his garden (Pareto, 1971). This idea became known as the Pareto principle or
the 80–20 rule. The particular 80/20 ratio is not as important as the more general idea of the uneven
distribution of results and causes in a variety of areas.

Common applications are the rules of thumb that: (a) in business 80% of sales come from 20%
of clients; (b) in criminology 80% of crimes are said to be committed by 20% of the population. (c)
In software development, it is said that 80% of errors and (d) crashes can be eliminated by fixing
the top 20% most-reported bugs or that 80% of errors reside in 20% of the code.

The Pareto chart was designed to display the frequency distribution of a variable with a his-
togram or bar chart together with a cumulative line graph to highlight the most frequent category,
and the Pareto distribution gives a mathematical form to such distributions with a parameter α (the
Pareto index) reflecting the degree of inequality.

Applied to statistical graphics, the precept is that

20% of your effort can generate 80% of your desired result in producing a given plot.

This is good news for exploratory graphs you produce for yourself. Very often, the default settings
will give a reasonable result, or you will see immediately something simple to add or change to
make the plot easier to understand.

The bad news is the corollary of this rule:

80% of your effort may be required to produce the remaining 20% of a finished
graph.

This is particularly important for presentation graphs, where several iterations may be necessary to
get it right (or right enough) for your communication purposes. Some important details are:

graph title A presentation graphic can be more effective when it announces the main point or
conclusion in the graphic title, as in Figure 1.8.

axis and value labels Axes should be labelled with meaningful variable descriptions (and perhaps
the data units) rather than just plot defaults (e.g., “Temperature (degrees F)” in Figure 1.2, not
temp). Axis values are often more of a challenge for categorical variables, where their text
labels often overlap, requiring abbreviation, a smaller font, or text rotation.

grouping attributes Meaningfully different subsets of the data should be rendered with distinct
visual attributes such as color, shape, and line style, and sometimes with more than one.
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legends and direct labels Different data groups in a graphic display shown by color, shape, etc.,
usually need at least a graphic legend defining the symbols and group labels. Sometimes you can
do better by applying the labels directly to the graphical elements,10 as was done in Figure 1.14.

legibility A common failure in presentation graphs in journals and lectures is the use of text fonts
too small to be read easily. One rule of thumb is to hold the graph at arms length for a journal
and put it on the floor for a lecture slide. If you can’t read the labels, the font is too small.

plot annotations Beyond the basic graphic data display, additional annotations can add consider-
able information to interpret the context or uncertainty, as in the use of plot envelopes to show
confidence bands or regions (see Figure 1.3 and Figure 1.4).

aspect ratio Line graphs (such as Figure 3.1) are often easiest to understand when the ratio of
height to width is such that line segments have an average slope near 1.0 (Cleveland et al., 1988).
In R, you can easily manipulate a graph window manually with a mouse to observe this effect
and find an aspect ratio that looks right. Moreover, in graphs for biplots and correspondence
analysis (Chapter 6), interpretation involves distances between points and angles between line
segments. This requires an aspect ratio that equates the units on the axes. Careful software will
do this for you,11 and you should resist the temptation to re-shape the plot.

colors Whereas a good choice of colors can greatly enhance a graphical display, badly chosen col-
ors, ignoring principles of human perception, can actually spoil it. First, considering that graphs
are often reproduced in black and white and a significant percentage of the human population is
affected by color deficiencies, important information should not be coded by color alone without
careful thought.

Second, color palettes should be chosen carefully to put the desired emphasis on the information
visualized. For example, consider Figure 1.15 showing qualitative color palettes (appropriate
for unordered categories) taken from two different color spaces: Hue-Saturation-Value (HSV)
and Hue-Chroma-Luminance (HCL), where only the hue is varied. Whereas one would expect
such a palette to be balanced with respect to colorfulness and brightness, the red colors in the
left (HSV) color wheel are generally perceived to be more more intense and flashy than the cor-
responding blue colors, and the highly saturated dark blue dominates the wheel. Consequently,
areas shaded with these colors may appear more important than others in an uncontrolled way,
distracting from the information to be conveyed. In contrast, the colors from the right (HCL)
wheel are all balanced to the same gray level and in “harmony.” These clearly should be pre-
ferred whenever categories of the same importance shall be compared.

Another related perception rule prescribes that lighter and darker colors should not be mixed
in a display where areas should be compared since lighter colors look larger than darker ones.
More background information on the choice of “good” colors for statistical graphics can be
found in Zeileis et al. (2009).

visual impact Somewhat related, important features of a display should be visually distinguished
from the less important. This may be achieved by different color or gray shading levels, or
simply by contrasting filled with non-filled geometric shapes, or a different density of shading
lines. One useful test for visual impact is to put a printed copy of a graph on the floor, rise up,
and see what stands out.

10For example, the identify() function allows points in a plot to be labeled interactively with a mouse. The directla-
bels (Hocking, 2013) package provides a general method for a variety of plots.

11For example using the graphics parameter asp=1, eqsplot() in MASS (Ripley, 2015a), or the equivalents in lattice
(aspect="iso") and ggplot2 (coord_equal).
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Figure 1.15: Qualitative color palette for the HSV (left) and HCL (right) spaces. The HSV colors
are (H, 100, 100) and the HCL colors (H, 50, 70) for the same hues H . Note that in a monochrome
version of this page, all pie sectors in the right wheel will be shaded with the same gray, i.e., they
will appear to be virtually identical.

Nearly all of the graphs in this book were produced using R code in scripts saved as files and
embedded in the text (via the knitr package). This has the advantages of reproducibility and en-
hancement: just re-run the code, or tweak it to improve a graph. If this is too hard, you can always
use an external graphics editor (Gimp, Inkscape, Adobe Illustrator, etc.) to make improvements
manually.

1.5 Chapter summary

• Categorical data differs from quantitative data because the variables take on discrete values
(ordered or unordered, character or numeric) rather than continuous numerical values. Con-
sequently, such data often appear in aggregated form representing category frequencies or in
tables.

• Data analysis methods for categorical data are comprised of those concerned mainly with testing
particular hypotheses versus those that fit statistical models. Model building methods have the
advantages of providing parameter estimates and model-predicted values, along with measures
of uncertainty (standard errors).

• Graphical methods can serve different purposes for different goals (data analysis versus presen-
tation), and these suggest different design principles that a graphic should respect to achieve a
given communication goal.

• For categorical data, some graphic forms (bar charts, line graphs, scatterplots) used for quanti-
tative data can be readily adapted to discrete variables. However, frequency data often requires
novel graphics using area and other visual attributes.

• Graphics can be far more effective when categorical variables are ordered to facilitate compari-
son of the effects to be seen and rendered to facilitate detection of patterns, trends or anomalies.

• The visualization approach to data analysis often entails a sequence of intertwined steps involv-
ing graphing and model fitting.

• Producing effective graphs for presentation is often hard work, requiring attention to details that
support or detract from your communication goal.
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1.6 Lab exercises

Exercise 1.1 A web page, “The top ten worst graphs, ” http://www.biostat.wisc.edu/
~kbroman/topten_worstgraphs/ by Karl Broman lists his picks for the worst graphs (and
a table) that have appeared in the statistical and scientific literature. Each entry links to graph(s) and
a brief discussion of what is wrong and how it could be improved.

(a) Examine a number of recent issues of a scientific or statistical journal in which you have some
interest. Find one or more examples of a graph or table that is a particularly bad use of display
material to summarize and communicate research findings. Write a few sentences indicating
how or why the display fails and how it could be improved.

(b) Do the same task for some popular magazine or newspaper that uses data displays to supple-
ment the text for some story. Again, write a few sentences describing why the display is bad
and how it could be improved.

Exercise 1.2 As in the previous exercise, examine the literature in recent issues of some journal
of interest to you. Find one or more examples of a graph or table that you feel does a good job of
summarizing and communicating research findings.

(a) Write a few sentences describing why you chose these displays.
(b) Now take the role of a tough journal reviewer. Are there any features of the display that could

be modified to make them more effective?

Exercise 1.3 Infographics are another form of visual displays, quite different from the data graph-
ics featured in this book, but often based on some data or analysis. Do a Google image search for
the topic “Global warming” to see a rich collection.

(a) Find and study one or two images that attempt some visual explanation of causes and/or effects
of global warming. Describe the main message in a sentence or two.

(b) What visual and graphic features are used in these to convey the message?

Exercise 1.4 The Wikipedia web page en.wikipedia.org/wiki/Portal:Global_warming
gives a few data-based graphics on the topic of global warming. Read the text and study the graphs.

(a) Write a short figure title for each that would announce the conclusion to be drawn in a presen-
tation graphic.

(b) Write a figure caption for each that would explain what is shown and the important graphical
details for a reader to understand.

Exercise 1.5 The R Graph Gallery, http://rgraphgallery.blogspot.com/, contains a
large collection of examples of graphs in R, tagged by type or content, together with the R code to
produce them. Explore this collection for the terms (a) association plot (b) bar chart (c) categorical
data (d) fluctuation diagram (e) mosaic plot Find one or two you particularly like and write a few
sentences saying why you do.

http://www.biostat.wisc.edu/~kbroman/topten_worstgraphs/
http://www.biostat.wisc.edu/~kbroman/topten_worstgraphs/
http://rgraphgallery.blogspot.com/
http://en.wikipedia.org/wiki/Portal:Global_warming
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Creating and manipulating categorical data sets requires some skills and techniques in
R beyond those ordinarily used for quantitative data. This chapter illustrates these for the
main formats for categorical data: case form, frequency form and table form.

I’m a tidy sort of bloke. I don’t like chaos. I kept records in the record rack, tea in the
tea caddy, and pot in the pot box

George Harrison, from
http://www.brainyquote.com/quotes/keywords/tidy.html

Categorical data can be represented as data sets in various formats: case form, frequency form,
and table form. This chapter describes and illustrates the skills and techniques in R needed to input,
create, and manipulate R data objects to represent categorical data. More importantly, you also
need to be able to convert these from one form to another for the purposes of statistical analysis and
visualization, which are the subject of the remainder of the book.

As mentioned earlier, this book assumes that you have at least a basic knowledge of the R
language and environment, including interacting with the R console (Rgui for Windows, R.app for
Mac OS X) or some other editor/environment (e.g., R Studio), loading and using R functions in
packages (e.g., library(vcd)) getting help for these from R (e.g., help(matrix)), etc. This
chapter is therefore devoted to covering those topics needed in the book beyond such basic skills.1

1Some excellent introductory treatments of R are: Fox and Weisberg (2011a, Chapter 2), Maindonald and Braun
(2007), and Dalgaard (2008). Tom Short’s R Reference Card, http://cran.us.r-project.org/doc/contrib/
Short-refcard.pdf, is a handy 4-page summary of the main functions. The web sites Quick-R http://www.
statmethods.net/ and Cookbook for R http://www.cookbook-r.com/ provide very helpful examples, orga-
nized by topics and tasks.
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http://cran.us.r-project.org/doc/contrib/Short-refcard.pdf
http://www.statmethods.net/
http://www.statmethods.net/
http://www.cookbook-r.com/
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vector array data framematrix

logicals characters numbers

Figure 2.1: Principal data structures and data types in R. Colors represent different data types:
numeric, character, logical.

2.1 Working with R data: vectors, matrices, arrays, and
data frames

R has a wide variety of data structures for storing, manipulating, and calculating with data. Among
these, vectors, matrices, arrays, and data frames are most important for the material in this book.

In R, a vector is a collection of values, like numbers, character strings, or logicals (TRUE,
FALSE), and often correspond to a variable in some analysis. Matrices are rectangular arrays like a
traditional table, composed of vectors in their columns or rows. Arrays add additional dimensions,
so that, for example, a 3-way table can be represented as composed of rows, columns, and layers.
An important consideration is that the values in vectors, matrices, and arrays must all be of the same
mode, e.g., numbers or character strings. A data frame is a rectangular table, like a traditional data
set in other statistical environments, and composed of rows and columns like a matrix, but allowing
variables (columns) of different types. These data structures and the types of data they can contain
are illustrated in Figure 2.1. A more general data structure is a list, a generic vector that can contain
any other types of objects (including lists, allowing for recursive data structures). A data frame is
basically a list of equally sized vectors, each representing a column of the data frame.

2.1.1 Vectors

The simplest data structure in R is a vector, a one-dimensional collection of elements of the same
type. An easy way to create a vector is with the c() function, which combines its arguments. The
following examples create and print vectors of length 4, containing numbers, character strings, and
logical values, respectively:

> c(17, 20, 15, 40)

[1] 17 20 15 40

> c("female", "male", "female", "male")

[1] "female" "male" "female" "male"

> c(TRUE, TRUE, FALSE, FALSE)

[1] TRUE TRUE FALSE FALSE

To store these values in variables, R uses the assignment operator (<-) or equals sign (=). This
creates a variable named on the left-hand side. An assignment doesn’t print the result, but a bare
expression does, so you can assign and print by surrounding the assignment with ().
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> count <- c(17, 20, 15, 40) # assign
> count # print

[1] 17 20 15 40

> (sex <- c("female", "male", "female", "male")) # both

[1] "female" "male" "female" "male"

> (passed <- c(TRUE, TRUE, FALSE, FALSE))

[1] TRUE TRUE FALSE FALSE

Other useful functions for creating vectors are:

• The : operator for generating consecutive integer sequences, e.g., 1:10 gives the integers 1 to
10. The seq() function is more general, taking the forms seq(from, to), seq(from,
to, by= ), and seq(from, to, length.out= ) where the optional argument by
specifies the interval between adjacent values and length.out gives the desired length of the
result.

• The rep() function generates repeated sequences, replicating its first argument (which may be
a vector) a given number of times, and individual elements can be repeated with each until
an optional length.out is obtained.

> seq(10, 100, by = 10) # give interval

[1] 10 20 30 40 50 60 70 80 90 100

> seq(0, 1, length.out = 11) # give length

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> (sex <- rep(c("female", "male"), times = 2))

[1] "female" "male" "female" "male"

> (sex <- rep(c("female", "male"), length.out = 4)) # same

[1] "female" "male" "female" "male"

> (passed <- rep(c(TRUE, FALSE), each = 2))

[1] TRUE TRUE FALSE FALSE

2.1.2 Matrices
A matrix is a two-dimensional array of elements of the same type composed in a rectangular array of
rows and columns. Matrices can be created by the function matrix(values, nrow, ncol),
which reshapes the elements in the first argument (values) to a matrix with nrow rows and ncol
columns. By default, the elements are filled in columnwise, unless the optional argument byrow
= TRUE is given.

> (matA <- matrix(1:8, nrow = 2, ncol = 4))

[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8
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> (matB <- matrix(1:8, nrow = 2, ncol = 4, byrow = TRUE))

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8

> (matC <- matrix(1:4, nrow = 2, ncol = 4))

[,1] [,2] [,3] [,4]
[1,] 1 3 1 3
[2,] 2 4 2 4

The last example illustrates that the values in the first argument are recycled as necessary to fill the
given number of rows and columns.

All matrices have a dimensions attribute, a vector of length two giving the number of rows and
columns, retrieved with the function dim(). Labels for the rows and columns can be assigned
using dimnames(),2 which takes a list of two vectors for the row names and column names,
respectively. To see the structure of a matrix (or any other R object) and its attributes, you can use
the str() function, as shown in the example below.

> dim(matA)

[1] 2 4

> str(matA)

int [1:2, 1:4] 1 2 3 4 5 6 7 8

> dimnames(matA) <- list(c("M", "F"), LETTERS[1:4])
> matA

A B C D
M 1 3 5 7
F 2 4 6 8

> str(matA)

int [1:2, 1:4] 1 2 3 4 5 6 7 8
- attr(*, "dimnames")=List of 2
..$ : chr [1:2] "M" "F"
..$ : chr [1:4] "A" "B" "C" "D"

Additionally, names for the row and column variables themselves can also be assigned in the
dimnames call by giving each dimension vector a name.

> dimnames(matA) <- list(sex = c("M", "F"), group = LETTERS[1:4])
> ## or: names(dimnames(matA)) <- c("Sex", "Group")
> matA

group
sex A B C D
M 1 3 5 7
F 2 4 6 8

> str(matA)

int [1:2, 1:4] 1 2 3 4 5 6 7 8
- attr(*, "dimnames")=List of 2
..$ sex : chr [1:2] "M" "F"
..$ group: chr [1:4] "A" "B" "C" "D"

2The dimnames can also be specified as an optional argument to matrix().
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(LETTERS is a predefined character vector of the 26 uppercase letters). Matrices can also be created
or enlarged by “binding” vectors or matrices together by rows or columns:

• rbind(a, b, c) creates a matrix with the vectors a, b, and c as its rows, recycling the
elements as necessary to the length of the longest one.

• cbind(a, b, c) creates a matrix with the vectors a, b, and c as its columns.
• rbind(mat, a, b, ...) and cbind(mat, a, b, ...) add additional rows (columns)

to a matrix mat, recycling or subsetting the elements in the vectors to conform with the size of
the matrix.

> rbind(matA, c(10, 20))

A B C D
M 1 3 5 7
F 2 4 6 8
10 20 10 20

> cbind(matA, c(10, 20))

A B C D
M 1 3 5 7 10
F 2 4 6 8 20

Rows and columns can be swapped (transposed) using t():

> t(matA)

sex
group M F

A 1 2
B 3 4
C 5 6
D 7 8

Finally, we note that basic computations involving matrices are performed element-wise:

> 2 * matA / 100

group
sex A B C D
M 0.02 0.06 0.10 0.14
F 0.04 0.08 0.12 0.16

Special operators and functions do exist for matrix operations, such as %*% for the matrix product.

2.1.3 Arrays
Higher-dimensional arrays are less frequently encountered in traditional data analysis, but they are
of great use for categorical data, where frequency tables of three or more variables can be naturally
represented as arrays, with one dimension for each table variable.

The function array(values, dim) takes the elements in values and reshapes these into
an array whose dimensions are given in the vector dim. The number of dimensions is the length
of dim. As with matrices, the elements are filled in with the first dimension (rows) varying most
rapidly, then by the second dimension (columns) and so on for all further dimensions, which can be
considered as layers. A matrix is just the special case of an array with two dimensions.
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> dims <- c(2, 4, 2)
> (arrayA <- array(1:16, dim = dims)) # 2 rows, 4 columns, 2 layers

, , 1

[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

, , 2

[,1] [,2] [,3] [,4]
[1,] 9 11 13 15
[2,] 10 12 14 16

> str(arrayA)

int [1:2, 1:4, 1:2] 1 2 3 4 5 6 7 8 9 10 ...

> (arrayB <- array(1:16, dim = c(2, 8))) # 2 rows, 8 columns

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 3 5 7 9 11 13 15
[2,] 2 4 6 8 10 12 14 16

> str(arrayB)

int [1:2, 1:8] 1 2 3 4 5 6 7 8 9 10 ...

In the same way that we can assign labels to the rows and columns in matrices, we can assign
these attributes to dimnames(arrayA), or include this information in a dimnames= argument
to array().

> dimnames(arrayA) <- list(sex = c("M", "F"),
+ group = letters[1:4],
+ time = c("Pre", "Post"))
> arrayA

, , time = Pre

group
sex a b c d
M 1 3 5 7
F 2 4 6 8

, , time = Post

group
sex a b c d
M 9 11 13 15
F 10 12 14 16

> str(arrayA)

int [1:2, 1:4, 1:2] 1 2 3 4 5 6 7 8 9 10 ...
- attr(*, "dimnames")=List of 3
..$ sex : chr [1:2] "M" "F"
..$ group: chr [1:4] "a" "b" "c" "d"
..$ time : chr [1:2] "Pre" "Post"

Arrays in R can contain any single type of elements— numbers, character strings, logicals. R
also has a variety of functions (e.g., table(), xtabs()) for creating and manipulating "table"
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objects, which are specialized forms of matrices and arrays containing integer frequencies in a
contingency table. These are discussed in more detail below (Section 2.4).

2.1.4 Data frames

Data frames are the most commonly used form of data in R and more general than matrices in that
they can contain columns of different types. For statistical modeling, data frames play a special role,
in that many modeling functions are designed to take a data frame as a data= argument, and then
find the variables mentioned within that data frame. Another distinguishing feature is that discrete
variables (columns) like character strings ("M", "F") or integers (1, 2, 3) in data frames
can be represented as factors, which simplifies many statistical and graphical methods.

A data frame can be created using keyboard input with the data.frame() function, applied
to a list of objects, data.frame(a, b, c, ...), each of which can be a vector, matrix, or
another data frame, but typically all containing the same number of rows. This works roughly like
cbind(), collecting the arguments as columns in the result.

The following example generates n = 100 random observations on three discrete factor vari-
ables, A, B, sex, and a numeric variable, age. As constructed, all of these are statistically
independent, since none depends on any of the others. The function sample() is used here to
generate n random samples from the first argument allowing replacement (replace = TRUE).
The rnorm() function produces a vector of n normally distributed values with mean 30 and stan-
dard deviation 5. The call to set.seed() guarantees the reproducibility of the resulting data.
Finally, all four variables are combined into the data frame mydata.

> set.seed(12345) # reproducibility
> n <- 100
> A <- factor(sample(c("a1", "a2"), n, replace = TRUE))
> B <- factor(sample(c("b1", "b2"), n, replace = TRUE))
> sex <- factor(sample(c("M", "F"), n, replace = TRUE))
> age <- round(rnorm(n, mean = 30, sd = 5))
> mydata <- data.frame(A, B, sex, age)
> head(mydata, 5)

A B sex age
1 a2 b1 F 22
2 a2 b2 F 33
3 a2 b2 M 31
4 a2 b2 F 26
5 a1 b2 F 29

> str(mydata)

'data.frame': 100 obs. of 4 variables:
$ A : Factor w/ 2 levels "a1","a2": 2 2 2 2 1 1 1 2 2 2 ...
$ B : Factor w/ 2 levels "b1","b2": 1 2 2 2 2 2 2 2 1 1 ...
$ sex: Factor w/ 2 levels "F","M": 1 1 2 1 1 1 2 2 1 1 ...
$ age: num 22 33 31 26 29 29 38 28 30 27 ...

Rows, columns, and individual values in a data frame can be manipulated in the same way as a
matrix, using subscripting ([,]). Additionally, variables can be extracted using the $ operator:

> mydata[1,2]

[1] b1
Levels: b1 b2

> mydata$sex
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[1] F F M F F F M M F F M F M M F M M F F M M M M F F F F M M F
[31] M F M F F F F F M M F F F F F F F F M F M F M M F F M M M M
[61] F F F F F M M F F F M M M F F M F M M F M F M M M M M F F F
[91] F F M M F M F M F M
Levels: F M

> ##same as: mydata[,"sex"] or mydata[,3]

Values in data frames can also be edited conveniently using, e.g., fix(mydata), opening a simple,
spreadsheet-like editor.

For real data sets, it is usually most convenient to read these into R from external files, and this is
easiest using plain text (ASCII) files with one line per observation and fields separated by commas
(or tabs), and with a first header line giving the variable names—called comma-separated or CSV
format. If your data is in the form of Excel, SAS, SPSS, or other file format, you can almost always
export that data to CSV format first.3

The function read.table() has many options to control the details of how the data are read
and converted to variables in the data frame. Among these some important options are:

header indicates whether the first line contains variable names. The default is FALSE unless the
first line contains one fewer field than the number of columns;

sep (default: "", meaning white space, i.e., one or more spaces, tabs or newlines) specifies the
separator character between fields;

stringsAsFactors (default: TRUE) determines whether character string variables should be
converted to factors;

na.strings (default: "NA") refers to one or more strings that are interpreted as missing data
values (NA);

For delimited files, read.csv() and read.delim() are convenient wrappers to read.table(),
with default values sep="," and sep="\t" respectively, and header=TRUE.

EXAMPLE 2.1: Arthritis treatment
The file Arthritis.csv contains data in CSV format from Koch and Edwards (1988), rep-

resenting a double-blind clinical trial investigating a new treatment for rheumatoid arthritis with 84
patients.4 The first (“header”) line gives the variable names. Some of the lines in the file are shown
below, with ... representing omitted lines:

ID,Treatment,Sex,Age,Improved
57,Treated,Male,27,Some
46,Treated,Male,29,None
77,Treated,Male,30,None
17,Treated,Male,32,Marked
...
42,Placebo,Female,66,None
15,Placebo,Female,66,Some
71,Placebo,Female,68,Some
1,Placebo,Female,74,Marked

We read this into R using read.table() as shown below:

3The foreign (R Core Team, 2015) package contains specialized functions to directly read data stored by Minitab, SAS,
SPSS, Stata, Systat, and other software. There are also a number of packages for reading (and writing) Excel spreadsheets
directly (gdata (Warnes et al., 2014), XLConnect (Mirai Solutions GmbH, 2015), xlsx (Dragulescu, 2014)). The R manual,
R Data Import/Export covers many other variations, including data in relational data bases.

4This data set can be created using: library(vcd); write.table(Arthritis, file =
"Arthritis.csv", quote = FALSE, sep = ",").
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> path <- "ch02/Arthritis.csv" ## set path
> ## for convenience, use path <- file.choose() to retrieve a path
> ## then, use file.show(path) to inspect the data format
> Arthritis <- read.table(path, header = TRUE, sep = ",")
> str(Arthritis)

'data.frame': 84 obs. of 5 variables:
$ ID : int 57 46 77 17 36 23 75 39 33 55 ...
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
$ Age : int 27 29 30 32 46 58 59 59 63 63 ...
$ Improved : Factor w/ 3 levels "Marked","None",..: 3 2 2 1 1 1 2 1 2 2 ...

Note that the character variables Treatment, Sex, and Improved were converted to fac-
tors, and the levels of those variables were ordered alphabetically. This often doesn’t matter much
for binary variables, but here, the response variable Improved has levels that should be consid-
ered ordered, as c("None", "Some", "Marked"). We can correct this here by re-assigning
Arthritis$Improved using ordered(). The topic of re-ordering variables and levels in
categorical data is considered in more detail in Section 2.3.

> levels(Arthritis$Improved)

[1] "Marked" "None" "Some"

> Arthritis$Improved <- ordered(Arthritis$Improved,
+ levels = c("None", "Some", "Marked"))

4

2.2 Forms of categorical data: case form, frequency form,
and table form

As we saw in Chapter 1, categorical data can be represented as ordinary data sets in case form, but
the discrete nature of factors or stratifying variables allows the same information to be represented
more compactly in summarized form with a frequency variable for each cell of factor combinations,
or in tables. Consequently, we sometimes find data created or presented in one form (e.g., a spread-
sheet data set, a two-way table of frequencies) and want to input that into R. Once we have the data
in R, it is often necessary to manipulate the data into some other form for the purposes of statistical
analysis, visualizing results, and our own presentation. It is useful to understand the three main
forms of categorical data in R and how to work with them for our purposes.

2.2.1 Case form
Categorical data in case form are simply data frames, with one or more discrete classifying variables
or response variables, most conveniently represented as factors or ordered factors. In case form, the
data set can also contain numeric variables (covariates or other response variables) that cannot be
accommodated in other forms.

As with any data frame, X, you can access or compute with its attributes using nrow(X) for the
number of observations, ncol(X) for the number of variables, names(X) or colnames(X) for
the variable names, and so forth.

EXAMPLE 2.2: Arthritis treatment
The Arthritis data is available in case form in the vcd package. There are two explanatory

factors: Treatment and Sex. Age is a numeric covariate, and Improved is the response—an
ordered factor, with levels "None" < "Some" < "Marked". Excluding Age, we would have
a 2× 2× 3 contingency table for Treatment, Sex, and Improved.
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> data("Arthritis", package = "vcd") # load the data
> names(Arthritis) # show the variables

[1] "ID" "Treatment" "Sex" "Age" "Improved"

> str(Arthritis) # show the structure

'data.frame': 84 obs. of 5 variables:
$ ID : int 57 46 77 17 36 23 75 39 33 55 ...
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
$ Age : int 27 29 30 32 46 58 59 59 63 63 ...
$ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 3 1 3 1 1 ...

> head(Arthritis, 5) # first 5 observations, same as Arthritis[1:5,]

ID Treatment Sex Age Improved
1 57 Treated Male 27 Some
2 46 Treated Male 29 None
3 77 Treated Male 30 None
4 17 Treated Male 32 Marked
5 36 Treated Male 46 Marked

4

2.2.2 Frequency form
Data in frequency form is also a data frame, containing one or more discrete factor variables and a
frequency variable (often called Freq or count) representing the number of basic observations in
that cell.

This is an alternative representation of a table form data set considered below. In frequency form,
the number of cells in the equivalent table is nrow(X), and the total number of observations is the
sum of the frequency variable, sum(X$Freq), sum(X[,"Freq"]) or a similar expression.

EXAMPLE 2.3: General social survey
For small frequency tables, it is often convenient to enter them in frequency form using

expand.grid() for the factors and c() to list the counts in a vector. The example below,
from Agresti (2002), gives results for the 1991 General Social Survey, with respondents classified
by sex and party identification. As a table, the data look like this:

party
sex dem indep rep

female 279 73 225
male 165 47 191

We use expand.grid() to create a 6 × 2 matrix containing the combinations of sex and
party with the levels for sex given first, so that this varies most rapidly. Then, input the frequen-
cies in the table by columns from left to right, and combine these two results with data.frame().

> # Agresti (2002), table 3.11, p. 106
> tmp <- expand.grid(sex = c("female", "male"),
+ party = c("dem", "indep", "rep"))
> tmp

sex party
1 female dem
2 male dem
3 female indep
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4 male indep
5 female rep
6 male rep

> GSS <- data.frame(tmp, count = c(279, 165, 73, 47, 225, 191))
> GSS

sex party count
1 female dem 279
2 male dem 165
3 female indep 73
4 male indep 47
5 female rep 225
6 male rep 191

> names(GSS)

[1] "sex" "party" "count"

> str(GSS)

'data.frame': 6 obs. of 3 variables:
$ sex : Factor w/ 2 levels "female","male": 1 2 1 2 1 2
$ party: Factor w/ 3 levels "dem","indep",..: 1 1 2 2 3 3
$ count: num 279 165 73 47 225 191

> sum(GSS$count)

[1] 980

The last line above shows that there are 980 cases represented in the frequency table. 4

2.2.3 Table form

Table form data is represented as a matrix, array, or table object whose elements are the frequencies
in an n-way table. The number of dimensions of the table is the length, length(dim(X)), of
its dim (or dimnames) attribute, and the sizes of the dimensions in the table are the elements of
dim(X). The total number of observations represented is the sum of all the frequencies, sum(X).

EXAMPLE 2.4: Hair color and eye color
A classic data set on frequencies of hair color, eye color, and sex is given in table form in

HairEyeColor in the datasets package, reporting the frequencies of these categories for 592
students in a statistics course.

> data("HairEyeColor", package = "datasets") # load the data
> str(HairEyeColor) # show the structure

table [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 ...
- attr(*, "dimnames")=List of 3
..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"
..$ Eye : chr [1:4] "Brown" "Blue" "Hazel" "Green"
..$ Sex : chr [1:2] "Male" "Female"

> dim(HairEyeColor) # table dimension sizes

[1] 4 4 2

> dimnames(HairEyeColor) # variable and level names
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$Hair
[1] "Black" "Brown" "Red" "Blond"

$Eye
[1] "Brown" "Blue" "Hazel" "Green"

$Sex
[1] "Male" "Female"

> sum(HairEyeColor) # number of cases

[1] 592

Three-way (and higher-way) tables can be printed in a more convenient form using structable()
and ftable() as described below in Section 2.5. 4

Tables are often created from raw data in case form or frequency form using the functions
table() and xtabs() described in Section 2.4. For smallish frequency tables that are already
in tabular form, you can enter the frequencies in a matrix, and then assign dimnames and other
attributes.

To illustrate, we create the GSS data as a table below, entering the values in the table by rows
(byrow=TRUE), as they appear in printed form.

> GSS.tab <- matrix(c(279, 73, 225,
+ 165, 47, 191),
+ nrow = 2, ncol = 3, byrow = TRUE)
> dimnames(GSS.tab) <- list(sex = c("female", "male"),
+ party = c("dem", "indep", "rep"))
> GSS.tab

party
sex dem indep rep
female 279 73 225
male 165 47 191

GSS.tab is a matrix, not an object of class("table"), and some functions are happier
with tables than matrices.5 You should therefore coerce it to a table with as.table(),

> GSS.tab <- as.table(GSS.tab)
> str(GSS.tab)

table [1:2, 1:3] 279 165 73 47 225 191
- attr(*, "dimnames")=List of 2
..$ sex : chr [1:2] "female" "male"
..$ party: chr [1:3] "dem" "indep" "rep"

EXAMPLE 2.5: Job satisfaction
Here is another similar example, entering data on job satisfaction classified by income and

level of satisfaction from a 4× 4 table given by Agresti (2002, Table 2.8, p. 57).

> ## A 4 x 4 table Agresti (2002, Table 2.8, p. 57) Job Satisfaction
> JobSat <- matrix(c(1, 2, 1, 0,
+ 3, 3, 6, 1,
+ 10, 10, 14, 9,
+ 6, 7, 12, 11),

5There are quite a few functions in R with specialized methods for "table" objects. For example, plot(GSS.tab)
gives a mosaic plot and barchart(GSS.tab) gives a divided bar chart.
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+ nrow = 4, ncol = 4)
> dimnames(JobSat) <-
+ list(income = c("< 15k", "15-25k", "25-40k", "> 40k"),
+ satisfaction = c("VeryD", "LittleD", "ModerateS", "VeryS"))
> JobSat <- as.table(JobSat)
> JobSat

satisfaction
income VeryD LittleD ModerateS VeryS
< 15k 1 3 10 6
15-25k 2 3 10 7
25-40k 1 6 14 12
> 40k 0 1 9 11

4

2.3 Ordered factors and reordered tables

As we saw above (Example 2.1), the levels of factor variables in data frames (case form or frequency
form) can be re-ordered (and the variables declared as ordered factors) using ordered(). As well,
the order of the factor values themselves can be rearranged by sorting the data frame using sort().

However, in table form, the values of the table factors are ordered by their position in the table.
Thus in the JobSat data, both income and satisfaction represent ordered factors, and the
positions of the values in the rows and columns reflect their ordered nature, but only implicitly.

Yet, for analysis or graphing, there are occasions when you need numeric values for the levels
of ordered factors in a table, e.g., to treat a factor as a quantitative variable. In such cases, you
can simply re-assign the dimnames attribute of the table variables. For example, here, we assign
numeric values to income as the middle of their ranges, and treat satisfaction as equally
spaced with integer scores.

> dimnames(JobSat)$income <- c(7.5, 20, 32.5, 60)
> dimnames(JobSat)$satisfaction <- 1:4

A related case is when you want to preserve the character labels of table dimensions, but also
allow them to be sorted in some particular order. A simple way to do this is to prefix each label with
an integer index using paste().

> dimnames(JobSat)$income <-
+ paste(1:4, dimnames(JobSat)$income, sep = ":")
> dimnames(JobSat)$satisfaction <-
+ paste(1:4, dimnames(JobSat)$satisfaction, sep = ":")

A different situation arises with tables where you want to permute the levels of one or more
variables to arrange them in a more convenient order without changing their labels. For example, in
the HairEyeColor table, hair color and eye color are ordered arbitrarily.

For visualizing the data using mosaic plots and other methods described later, it turns out to
be more useful to assure that both hair color and eye color are ordered from dark to light. Hair
colors are actually ordered this way already: "Black", "Brown", "Red", "Blond". But
eye colors are ordered as "Brown", "Blue", "Hazel", "Green". It is easiest to re-order
the eye colors by indexing the columns (dimension 2) in this array to a new order, "Brown",
"Hazel", "Green", "Blue", giving the indices of the old levels in the new order (here:
1,3,4,2). Again str() is your friend, showing the structure of the result to check that the result is
what you want.



44 2. Working with Categorical Data

> data("HairEyeColor", package = "datasets")
> HEC <- HairEyeColor[, c(1, 3, 4, 2), ]
> str(HEC)

num [1:4, 1:4, 1:2] 32 53 10 3 10 25 7 5 3 15 ...
- attr(*, "dimnames")=List of 3
..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"
..$ Eye : chr [1:4] "Brown" "Hazel" "Green" "Blue"
..$ Sex : chr [1:2] "Male" "Female"

Finally, there are situations where, particularly for display purposes, you want to re-order the
dimensions of an n-way table, and/or change the labels for the variables or levels. This is easy
when the data are in table form: aperm() permutes the dimensions, and assigning to names and
dimnames changes variable names and level labels, respectively.

> str(UCBAdmissions)

table [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205 ...
- attr(*, "dimnames")=List of 3
..$ Admit : chr [1:2] "Admitted" "Rejected"
..$ Gender: chr [1:2] "Male" "Female"
..$ Dept : chr [1:6] "A" "B" "C" "D" ...

> # vary along the 2nd, 1st, and 3rd dimension in UCBAdmissions
> UCB <- aperm(UCBAdmissions, c(2, 1, 3))
> dimnames(UCB)$Admit <- c("Yes", "No")
> names(dimnames(UCB)) <- c("Sex", "Admitted", "Department")
> str(UCB)

table [1:2, 1:2, 1:6] 512 89 313 19 353 17 207 8 120 202 ...
- attr(*, "dimnames")=List of 3
..$ Sex : chr [1:2] "Male" "Female"
..$ Admitted : chr [1:2] "Yes" "No"
..$ Department: chr [1:6] "A" "B" "C" "D" ...

2.4 Generating tables with table() and xtabs()

With data in case form or frequency form, you can generate frequency tables from factor variables
in data frames using the table() function; for tables of proportions, use the prop.table()
function, and for marginal frequencies (summing over some variables) use margin.table().
The examples below use the same case-form data frame mydata used earlier (Section 2.1.4).

> set.seed(12345) # reproducibility
> n <- 100
> A <- factor(sample(c("a1", "a2"), n, replace = TRUE))
> B <- factor(sample(c("b1", "b2"), n, replace = TRUE))
> sex <- factor(sample(c("M", "F"), n, replace = TRUE))
> age <- round(rnorm(n, mean = 30, sd = 5))
> mydata <- data.frame(A, B, sex, age)

2.4.1 table()

table(...) takes a list of variables interpreted as factors, or a data frame whose columns are so
interpreted. It does not take a data= argument, so either supply the names of columns in the data
frame (possibly using with() for convenience), or select the variables using column indexes:
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> # 2-Way Frequency Table
> table(mydata$A, mydata$B) # A will be rows, B will be columns

b1 b2
a1 18 30
a2 22 30

> ## same: with(mydata, table(A, B))
> (mytab <- table(mydata[,1:2])) # same

B
A b1 b2
a1 18 30
a2 22 30

We can use margin.table(X, margin) to sum a table X for the indices in margin, i.e.,
over the dimensions not included in margin. A related function is addmargins(X, margin,
FUN = sum), which extends the dimensions of a table or array with the marginal values calcu-
lated by FUN.

> margin.table(mytab) # sum over A & B

[1] 100

> margin.table(mytab, 1) # A frequencies (summed over B)

A
a1 a2
48 52

> margin.table(mytab, 2) # B frequencies (summed over A)

B
b1 b2
40 60

> addmargins(mytab) # show all marginal totals

B
A b1 b2 Sum
a1 18 30 48
a2 22 30 52
Sum 40 60 100

The function prop.table() expresses the table entries as a fraction of a given marginal table.

> prop.table(mytab) # cell proportions

B
A b1 b2
a1 0.18 0.30
a2 0.22 0.30

> prop.table(mytab, 1) # row proportions

B
A b1 b2
a1 0.37500 0.62500
a2 0.42308 0.57692
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> prop.table(mytab, 2) # column proportions

B
A b1 b2
a1 0.45 0.50
a2 0.55 0.50

table() can also generate multidimensional tables based on 3 or more categorical variables.
In this case, use the ftable() or structable() function to print the results more attractively
as a “flat” (2-way) table.

> # 3-Way Frequency Table
> mytab <- table(mydata[,c("A", "B", "sex")])
> ftable(mytab)

sex F M
A B
a1 b1 9 9

b2 15 15
a2 b1 12 10

b2 19 11

table() ignores missing values by default, but has optional arguments useNA and exclude
that can be used to control this. See help(table) for the details.

2.4.2 xtabs()

The xtabs() function allows you to create cross tabulations of data using formula style input.
This typically works with case-form or frequency-form data supplied in a data frame or a matrix.
The result is a contingency table in array format, whose dimensions are determined by the terms on
the right side of the formula. As shown below, the summary method for tables produces a simple
χ2 test of independence of all factors, and indicates the number of cases and dimensions.

> # 3-Way Frequency Table
> mytable <- xtabs(~ A + B + sex, data = mydata)
> ftable(mytable) # print table

sex F M
A B
a1 b1 9 9

b2 15 15
a2 b1 12 10

b2 19 11

> summary(mytable) # chi-squared test of independence

Call: xtabs(formula = ~A + B + sex, data = mydata)
Number of cases in table: 100
Number of factors: 3
Test for independence of all factors:
Chisq = 1.54, df = 4, p-value = 0.82

When the data have already been tabulated in frequency form, include the frequency variable
(usually count or Freq) on the left side of the formula, as shown in the example below for the
GSS data.

> (GSStab <- xtabs(count ~ sex + party, data = GSS))
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party
sex dem indep rep
female 279 73 225
male 165 47 191

> summary(GSStab)

Call: xtabs(formula = count ~ sex + party, data = GSS)
Number of cases in table: 980
Number of factors: 2
Test for independence of all factors:
Chisq = 7, df = 2, p-value = 0.03

For "table" objects, the plot method produces basic mosaic plots using the mosaicplot()
function from the graphics package.

2.5 Printing tables with structable() and ftable()

2.5.1 Text output
For 3-way and larger tables, the functions ftable() (in the stats package) and structable()
(in vcd) provide a convenient and flexible tabular display in a “flat” (2-way) format.

With ftable(X, row.vars=, col.vars=), variables assigned to the rows and/or columns
of the result can be specified as the integer numbers or character names of the variables in the ar-
ray X. By default, the last variable is used for the columns. The formula method, in the form
ftable(colvars ~ rowvars, data) allows a formula where the left- and right-hand side
of formula specify the column and row variables, respectively.

> ftable(UCB) # default

Department A B C D E F
Sex Admitted
Male Yes 512 353 120 138 53 22

No 313 207 205 279 138 351
Female Yes 89 17 202 131 94 24

No 19 8 391 244 299 317

> #ftable(UCB, row.vars = 1:2) # same result
> ftable(Admitted + Sex ~ Department, data = UCB) # formula method

Admitted Yes No
Sex Male Female Male Female

Department
A 512 89 313 19
B 353 17 207 8
C 120 202 205 391
D 138 131 279 244
E 53 94 138 299
F 22 24 351 317

The structable() function is similar, but more general, and uses recursive splits in the
vertical or horizontal directions (similar to the construction of mosaic displays). It works with both
data frames and table objects.

> library(vcd)
> structable(HairEyeColor) # show the table: default

Eye Brown Blue Hazel Green
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Hair Sex
Black Male 32 11 10 3

Female 36 9 5 2
Brown Male 53 50 25 15

Female 66 34 29 14
Red Male 10 10 7 7

Female 16 7 7 7
Blond Male 3 30 5 8

Female 4 64 5 8

> structable(Hair + Sex ~ Eye, HairEyeColor) # specify col ~ row variables

Hair Black Brown Red Blond
Sex Male Female Male Female Male Female Male Female

Eye
Brown 32 36 53 66 10 16 3 4
Blue 11 9 50 34 10 7 30 64
Hazel 10 5 25 29 7 7 5 5
Green 3 2 15 14 7 7 8 8

It also returns an object of class "structable" for which there are a variety of special meth-
ods. For example, the transpose function t() interchanges rows and columns, so that a call like
t(structable(HairEyeColor)) produces the second result shown just above. There are
also plot methods: for example, plot() produces mosaic plots from the vcd package.

2.6 Subsetting data

Often, the analysis of some data set is focused on a subset only. For example, the HairEyeColor
data set introduced above tabulates frequencies of hair and eye colors for male and female students—
the analysis could concentrate on one group only, or compare both groups in a stratified analysis.
This section deals with extracting subsets of data in tables, structables, or data frames.

2.6.1 Subsetting tables

If data are available in tabular form created with table() or xtabs(), resulting in table
objects, subsetting is done via indexing, either with integers or character strings corresponding to
the factor levels. The following code extracts the female data from the HairEyeColor data set:

> HairEyeColor[,,"Female"]

Eye
Hair Brown Blue Hazel Green
Black 36 9 5 2
Brown 66 34 29 14
Red 16 7 7 7
Blond 4 64 5 8

> ##same using index: HairEyeColor[,,2]

Empty indices stand for taking all data of the corresponding dimension. The third one (Sex) is fixed
at the second (“Female”) level. Note that in this case, the dimensionality is reduced to a two-way
table, since dimensions with only one level are dropped by default. Functions like apply() can
iterate through all levels of one or several dimensions and apply a function to each subset. The
following calculates the total amount of male and female students:
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> apply(HairEyeColor, 3, sum)

Male Female
279 313

It is of course possible to select more than one level:

> HairEyeColor[c("Black", "Brown"), c("Hazel", "Green"),]

, , Sex = Male

Eye
Hair Hazel Green
Black 10 3
Brown 25 15

, , Sex = Female

Eye
Hair Hazel Green
Black 5 2
Brown 29 14

2.6.2 Subsetting structables
Structables work in a similar way, but take into account the hierarchical structure imposed by the
“flattened” format, and also distinguish explicitly between subsetting levels and subsetting tables.
In the following example, compare the different effects of applying the [ and [[ operators to the
structable:

> hec <- structable(Eye ~ Sex + Hair, data = HairEyeColor)
> hec

Eye Brown Blue Hazel Green
Sex Hair
Male Black 32 11 10 3

Brown 53 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

Female Black 36 9 5 2
Brown 66 34 29 14
Red 16 7 7 7
Blond 4 64 5 8

> hec["Male",]

Eye Brown Blue Hazel Green
Sex Hair
Male Black 32 11 10 3

Brown 53 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

> hec[["Male",]]

Eye Brown Blue Hazel Green
Hair
Black 32 11 10 3
Brown 53 50 25 15
Red 10 10 7 7
Blond 3 30 5 8
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The first form keeps the dimensionality, whereas the second conditions on the “Male” level and
returns the corresponding subtable. The following does this twice, once for Sex, and once for
Hair (restricted to the Male level):

> hec[[c("Male", "Brown"),]]

Eye Brown Blue Hazel Green

53 50 25 15

2.6.3 Subsetting data frames

Data available in data frames (frequency or case form) can also be subsetted, either by using indexes
on the rows and/or columns, or, more conveniently, by applying the subset() function. The
following statement will extract the Treatment and Improved variables for all female patients
older than 68:

> rows <- Arthritis$Sex == "Female" & Arthritis$Age > 68
> cols <- c("Treatment", "Improved")
> Arthritis[rows, cols]

Treatment Improved
39 Treated None
40 Treated Some
41 Treated Some
84 Placebo Marked

Note the use of the single & for the logical expression selecting the rows. The same result can be
achieved more conveniently using the subset() function, first taking the data set, followed by an
expression for selecting the rows (evaluated in the context of the data frame), and then an expression
for selecting the columns:

> subset(Arthritis, Sex == "Female" & Age > 68,
+ select = c(Treatment, Improved))

Treatment Improved
39 Treated None
40 Treated Some
41 Treated Some
84 Placebo Marked

Note the non-standard evaluation of c(Treatment, Improved): the meaning of c() is not
“combine the two columns into a single vector,” but “select both from the data frame.” Likewise,
columns can be removed using - on column names, which is not possible using standard indexing
in matrices or data frames:

> subset(Arthritis, Sex == "Female" & Age > 68,
+ select = -c(Age, ID))

Treatment Sex Improved
39 Treated Female None
40 Treated Female Some
41 Treated Female Some
84 Placebo Female Marked
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2.7 Collapsing tables

2.7.1 Collapsing over table factors: aggregate(), margin.table(),
and apply()

It sometimes happens that we have a data set with more variables or factors than we want to analyze,
or else, having done some initial analyses, we decide that certain factors are not important, and so
should be excluded from graphic displays by collapsing (summing) over them. For example, mosaic
plots and fourfold displays are often simpler to construct from versions of the data collapsed over
the factors that are not shown in the plots.

The appropriate tools to use again depend on the form in which the data are represented—
a case-form data frame, a frequency-form data frame (aggregate()), or a table-form array or
table object (margin.table() or apply()).

When the data are in frequency form, and we want to produce another frequency data frame,
aggregate() is a handy tool, using the argument FUN = sum to sum the frequency variable
over the factors not mentioned in the formula.

EXAMPLE 2.6: Dayton survey
The data frame DaytonSurvey in the vcdExtra package represents a 25 table giving the

frequencies of reported use (“ever used?”) of alcohol, cigarettes, and marijuana in a sample of 2276
high school seniors, also classified by sex and race.

> data("DaytonSurvey", package = "vcdExtra")
> str(DaytonSurvey)

'data.frame': 32 obs. of 6 variables:
$ cigarette: Factor w/ 2 levels "Yes","No": 1 2 1 2 1 2 1 2 1 2 ...
$ alcohol : Factor w/ 2 levels "Yes","No": 1 1 2 2 1 1 2 2 1 1 ...
$ marijuana: Factor w/ 2 levels "Yes","No": 1 1 1 1 2 2 2 2 1 1 ...
$ sex : Factor w/ 2 levels "female","male": 1 1 1 1 1 1 1 1 2 2 ...
$ race : Factor w/ 2 levels "white","other": 1 1 1 1 1 1 1 1 1 1 ...
$ Freq : num 405 13 1 1 268 218 17 117 453 28 ...

> head(DaytonSurvey)

cigarette alcohol marijuana sex race Freq
1 Yes Yes Yes female white 405
2 No Yes Yes female white 13
3 Yes No Yes female white 1
4 No No Yes female white 1
5 Yes Yes No female white 268
6 No Yes No female white 218

To focus on the associations among the substances, we want to collapse over sex and race. The
right-hand side of the formula used in the call to aggregate() gives the factors to be retained
in the new frequency data frame, Dayton_ACM_df. The left-hand side is the frequency variable
(Freq), and we aggregate using the FUN = sum.

> # data in frequency form: collapse over sex and race
> Dayton_ACM_df <- aggregate(Freq ~ cigarette + alcohol + marijuana,
+ data = DaytonSurvey, FUN = sum)
> Dayton_ACM_df

cigarette alcohol marijuana Freq
1 Yes Yes Yes 911
2 No Yes Yes 44
3 Yes No Yes 3
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4 No No Yes 2
5 Yes Yes No 538
6 No Yes No 456
7 Yes No No 43
8 No No No 279

4

When the data are in table form, and we want to produce another table, apply() with FUN =
sum can be used in a similar way to sum the table over dimensions not mentioned in the MARGIN
argument. margin.table() is just a wrapper for apply() using the sum() function.

EXAMPLE 2.7: Dayton survey
To illustrate, we first convert the DaytonSurvey to a 5-way table using xtabs(), giving

Dayton_tab.

> # convert to table form
> Dayton_tab <- xtabs(Freq ~ cigarette + alcohol + marijuana + sex + race,
+ data = DaytonSurvey)
> structable(cigarette + alcohol + marijuana ~ sex + race,
+ data = Dayton_tab)

cigarette Yes No
alcohol Yes No Yes No
marijuana Yes No Yes No Yes No Yes No

sex race
female white 405 268 1 17 13 218 1 117

other 23 23 0 1 2 19 0 12
male white 453 228 1 17 28 201 1 133

other 30 19 1 8 1 18 0 17

Then, use apply() on Dayton_tab to give the 3-way table Dayton_ACM_tab summed
over sex and race. The elements in this new table are the column sums for Dayton.tab shown by
structable() just above.

> # collapse over sex and race
> Dayton_ACM_tab <- apply(Dayton_tab, MARGIN = 1:3, FUN = sum)
> Dayton_ACM_tab <- margin.table(Dayton_tab, 1:3) # same result
> structable(cigarette + alcohol ~ marijuana, data = Dayton_ACM_tab)

cigarette Yes No
alcohol Yes No Yes No

marijuana
Yes 911 3 44 2
No 538 43 456 279

4

(Note that structable() would do the collapsing job for us anyway.)
Many of these operations can be performed using the **ply() functions in the plyr (Wickham,

2014a) package. For example, with the data in a frequency form data frame, use ddply() to
collapse over unmentioned factors, and summarise()as the function to be applied to each piece.

> library(plyr)
> Dayton_ACM_df <- ddply(DaytonSurvey, .(cigarette, alcohol, marijuana),
+ summarise, Freq = sum(Freq))
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2.7.2 Collapsing table levels: collapse.table()
A related problem arises when we have a table or array and for some purpose we want to reduce the
number of levels of some factors by summing subsets of the frequencies. For example, we may have
initially coded Age in 10-year intervals, and decide that, either for analysis or display purposes, we
want to reduce Age to 20-year intervals. The collapse.table() function in vcdExtra was
designed for this purpose.

EXAMPLE 2.8: Collapsing categories
Create a 3-way table, and collapse Age from 10-year to 20-year intervals and Education from

three levels to two. To illustrate, we first generate a 2×6×3 table of random counts from a Poisson
distribution with mean of 100, with factors sex, age, and education.

> # create some sample data in frequency form
> set.seed(12345) # reproducibility
> sex <- c("Male", "Female")
> age <- c("10-19", "20-29", "30-39", "40-49", "50-59", "60-69")
> education <- c("low", "med", "high")
> dat <- expand.grid(sex = sex, age = age, education = education)
> counts <- rpois(36, 100) # random Poisson cell frequencies
> dat <- cbind(dat, counts)
> # make it into a 3-way table
> tab1 <- xtabs(counts ~ sex + age + education, data = dat)
> structable(tab1)

age 10-19 20-29 30-39 40-49 50-59 60-69
sex education
Male low 105 98 123 97 95 105

med 74 113 114 82 95 85
high 121 116 104 103 89 100

Female low 107 95 105 116 103 92
med 96 88 93 118 99 108
high 120 102 96 103 127 84

Now collapse age to 20-year intervals, and education to 2 levels. In the arguments to
collapse.table(), levels of age and education given the same label are summed in the
resulting smaller table.

> # collapse age to 3 levels, education to 2 levels
> tab2 <- collapse.table(tab1,
+ age = c("10-29", "10-29", "30-49", "30-49", "50-69", "50-69"),
+ education = c("<high", "<high", "high"))
> structable(tab2)

age 10-29 30-49 50-69
sex education
Male <high 390 416 380

high 237 207 189
Female <high 386 432 402

high 222 199 211

4

2.8 Converting among frequency tables and data frames

As we’ve seen, a given contingency table can be represented equivalently in case form, frequency
form, and table form. However, some R functions were designed for one particular representation.
Table 2.1 gives an overview of some handy tools (with sketched usage) for converting from one
form to another, discussed below.
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Table 2.1: Tools for converting among different forms for categorical data

To this
From this Case form Frequency form Table form

Case form —
Z <- xtabs(˜ A+B)
as.data.frame(Z)

table(A, B)

Frequency form expand.dft(X) — xtabs(count ~ A+B)
Table form expand.dft(X) as.data.frame(X) —

2.8.1 Table form to frequency form
A contingency table in table form (an object of class "table") can be converted to a data frame
in frequency form with as.data.frame().6 The resulting data frame contains columns repre-
senting the classifying factors and the table entries (as a column named by the responseName
argument, defaulting to Freq). The function as.data.frame() is the inverse of xtabs(),
which converts a data frame to a table.

EXAMPLE 2.9: General social survey
Convert the GSStab object in table form to a data.frame in frequency form. By default, the

frequency variable is named Freq, and the variables sex and party are made factors.

> as.data.frame(GSStab)

sex party Freq
1 female dem 279
2 male dem 165
3 female indep 73
4 male indep 47
5 female rep 225
6 male rep 191

4

In addition, there are situations where numeric table variables are represented as factors, but you
need to convert them to numerics for calculation purposes.

EXAMPLE 2.10: Death by horse kick
For example, we might want to calculate the weighted mean of nDeaths in the HorseKicks

data. Using as.data.frame() won’t work here, because the variable nDeaths becomes a
factor.

> str(as.data.frame(HorseKicks))

'data.frame': 5 obs. of 2 variables:
$ nDeaths: Factor w/ 5 levels "0","1","2","3",..: 1 2 3 4 5
$ Freq : int 109 65 22 3 1

One solution is to use data.frame() directly and as.numeric() to coerce the table
names to numbers.

6Because R is object-oriented, this is actually a shorthand for the function as.data.frame.table(), which is
automatically selected for objects of class "table".
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> horse.df <- data.frame(nDeaths = as.numeric(names(HorseKicks)),
+ Freq = as.vector(HorseKicks))
> str(horse.df)

'data.frame': 5 obs. of 2 variables:
$ nDeaths: num 0 1 2 3 4
$ Freq : int 109 65 22 3 1

> horse.df

nDeaths Freq
1 0 109
2 1 65
3 2 22
4 3 3
5 4 1

Then, weighted.mean() works as we would like:

> weighted.mean(horse.df$nDeaths, weights=horse.df$Freq)

[1] 2

4

2.8.2 Case form to table form

Going the other way, we use table() to convert from case form to table form.

EXAMPLE 2.11: Arthritis treatment
Convert the Arthritis data in case form to a 3-way table of Treatment× Sex× Improved.

We select the desired columns with their names, but could also use column numbers, e.g.,
table(Arthritis[,c(2,3,5)]).

> Art.tab <- table(Arthritis[,c("Treatment", "Sex", "Improved")])
> str(Art.tab)

'table' int [1:2, 1:2, 1:3] 19 6 10 7 7 5 0 2 6 16 ...
- attr(*, "dimnames")=List of 3
..$ Treatment: chr [1:2] "Placebo" "Treated"
..$ Sex : chr [1:2] "Female" "Male"
..$ Improved : chr [1:3] "None" "Some" "Marked"

> ftable(Art.tab)

Improved None Some Marked
Treatment Sex
Placebo Female 19 7 6

Male 10 0 1
Treated Female 6 5 16

Male 7 2 5

4

2.8.3 Table form to case form

There may also be times that you will need an equivalent case form data frame with factors rep-
resenting the table variables rather than the frequency table. For example, the mca() function in
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package MASS (for multiple correspondence analysis) only operates on data in this format. The
function expand.dft()7 in vcdExtra does this, converting a table into a case form.

EXAMPLE 2.12: Arthritis treatment
Convert the Arthritis data in table form (Art.tab) back to a data.frame in case form,

with factors Treatment, Sex, and Improved.

> library(vcdExtra)
> Art.df <- expand.dft(Art.tab)
> str(Art.df)

'data.frame': 84 obs. of 3 variables:
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 1 1 1 1 1 1 1 1 1 1 ...
$ Sex : Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 1 1 1 1 ...
$ Improved : Factor w/ 3 levels "Marked","None",..: 2 2 2 2 2 2 2 2 2 2 ...

4

2.8.4 Publishing tables to LATEX or HTML
OK, you’ve read your data into R, done some analysis, and now want to include some tables in a
LATEX document or in a web page in HTML format. Formatting tables for these purposes is often
tedious and error-prone.

There are a great many packages in R that provide for nicely formatted, publishable tables for
a wide variety of purposes; indeed, most of the tables in this book are generated using these tools.
See Leifeld (2013) for a description of the texreg (Leifeld, 2014) package and a comparison with
some of the other packages.

Here, we simply illustrate the xtable (Dahl, 2014) package, which, along with capabilities for
statistical model summaries, time-series data, and so forth, has a xtable.table method for one-
way and two-way table objects.

The HorseKicks data is a small one-way frequency table described in Example 3.4 and con-
tains the frequencies of 0, 1, 2, 3, 4 deaths per corps-year by horse-kick among soldiers in 20 corps
in the Prussian army.

> data("HorseKicks", package = "vcd")
> HorseKicks

nDeaths
0 1 2 3 4

109 65 22 3 1

By default, xtable() formats this in LATEX as a vertical table, and prints the LATEX markup to
the R console. This output is shown below.

> library(xtable)
> xtable(HorseKicks)

% latex table generated in R 3.2.1 by xtable 1.8-0 package
% Thu Nov 12 13:05:37 2015
\begin{table}[ht]
\centering
\begin{tabular}{rr}
\hline

& nDeaths \\
\hline

0 & 109 \\
1 & 65 \\

7The original code for this function was provided by Marc Schwarz on the R-Help mailing list.
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2 & 22 \\
3 & 3 \\
4 & 1 \\
\hline

\end{tabular}
\end{table}

When this is rendered in a LATEX document, the result of xtable() appears as shown in the
table below.

> xtable(HorseKicks)

nDeaths
0 109
1 65
2 22
3 3
4 1

The table above isn’t quite right, because the column label “nDeaths” belongs to the first column,
and the second column should be labeled “Freq.” To correct that, we convert the HorseKicks
table to a data frame (see Section 2.8 for details), add the appropriate colnames, and use the
print.xtable method to supply some other options.

> tab <- as.data.frame(HorseKicks)
> colnames(tab) <- c("nDeaths", "Freq")
> print(xtable(tab), include.rownames = FALSE,
+ include.colnames = TRUE)

nDeaths Freq
0 109
1 65
2 22
3 3
4 1

There are many more options to control the LATEX details and polish the appearance of the table; see
help(xtable) and vignette("xtableGallery", package = "xtable").

Finally, in Chapter 3, we display a number of similar one-way frequency tables in a transposed
form to save display space. Table 3.3 is the finished version we show there. The code below uses
the following techniques, giving the version shown in Table 2.2: (a) addmargins() is used to
show the sum of all the frequency values; (b) t() transposes the data frame to have 2 rows; (c)
rownames() assigns the labels we want for the rows; (d) using the caption argument provides
a table caption, and a numbered table in LATEX; (e) column alignment ("r" or "l") for the table
columns is computed as a character string used for the align argument.

> horsetab <- t(as.data.frame(addmargins(HorseKicks)))
> rownames(horsetab) <- c( "Number of deaths", "Frequency" )
> horsetab <- xtable(horsetab, digits = 0, label="tab:xtable5",
+ caption = "von Bortkiewicz's data on deaths by horse kicks",
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+ align = paste0("l|", paste(rep("r", ncol(horsetab)),
+ collapse = ""))
+ )
> print(horsetab, include.colnames=FALSE, caption.placement="top")

Table 2.2: von Bortkiewicz’s data on deaths by horse kicks
Number of deaths 0 1 2 3 4 Sum
Frequency 109 65 22 3 1 200

For use in a web page, blog, or Word document, you can use type="HTML" in the call to
print() for "xtable" objects.

2.9 A complex example: TV viewing data?

If you have followed so far, congratulations! You are ready for a more complicated example that
puts together a variety of the skills developed in this chapter: (a) reading raw data, (b) creating
tables, (c) assigning level names to factors and (d) collapsing levels or variables for use in analysis.

For an illustration of these steps, we use the dataset tv.dat, supplied with the initial im-
plementation of mosaic displays in R by Jay Emerson. In turn, they were derived from an early,
compelling example of mosaic displays (Hartigan and Kleiner, 1984) that illustrated the method
with data on a large sample of TV viewers whose behavior had been recorded for the Neilsen rat-
ings. This data set contains sample television audience data from Neilsen Media Research for the
week starting November 6, 1995.

The data file, tv.dat, is stored in frequency form as a file with 825 rows and 5 columns. There
is no header line in the file, so when we use read.table() below, the variables will be named
V1 – V5. This data represents a 4-way table of size 5× 11× 5× 3 = 825 where the table variables
are V1 – V4, and the cell frequency is read as V5.

The table variables are:
V1— values 1:5 correspond to the days Monday–Friday;
V2— values 1:11 correspond to the quarter-hour times 8:00 pm through 10:30 pm;
V3— values 1:5 correspond to ABC, CBS, NBC, Fox, and non-network choices;
V4— values 1:3 correspond to transition states: turn the television Off, Switch channels, or

Persist in viewing the current channel.

2.9.1 Creating data frames and arrays
The file tv.dat is stored in the doc/extdata directory of vcdExtra; it can be read as follows:

> tv_data <- read.table(system.file("doc", "extdata", "tv.dat",
+ package = "vcdExtra"))
> str(tv_data)

'data.frame': 825 obs. of 5 variables:
$ V1: int 1 2 3 4 5 1 2 3 4 5 ...
$ V2: int 1 1 1 1 1 2 2 2 2 2 ...
$ V3: int 1 1 1 1 1 1 1 1 1 1 ...
$ V4: int 1 1 1 1 1 1 1 1 1 1 ...
$ V5: int 6 18 6 2 11 6 29 25 17 29 ...
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> head(tv_data, 5)

V1 V2 V3 V4 V5
1 1 1 1 1 6
2 2 1 1 1 18
3 3 1 1 1 6
4 4 1 1 1 2
5 5 1 1 1 11

To read such data from a local file, just use read.table() in this form:

> tv_data <- read.table("C:/R/data/tv.dat")

or, to select the path using the file-chooser tool,

> tv_data <- read.table(file.choose())

We could use this data in frequency form for analysis by renaming the variables, and converting
the integer-coded factors V1 – V4 to R factors. The lines below use the function within() to
avoid having to use TV.dat$Day <- factor(TV.dat$Day) etc., and only supply labels for
the first variable.

> TV_df <- tv_data
> colnames(TV_df) <- c("Day", "Time", "Network", "State", "Freq")
> TV_df <- within(TV_df, {
+ Day <- factor(Day,
+ labels = c("Mon", "Tue", "Wed", "Thu", "Fri"))
+ Time <- factor(Time)
+ Network <- factor(Network)
+ State <- factor(State)
+ })

Alternatively, we could just reshape the frequency column (V5 or tv_data[,5]) into a 4-way
array. In the lines below, we rely on the facts that (a) the table is complete—there are no missing
cells, so nrow(tv_data) = 825; (b) the observations are ordered so that V1 varies most rapidly
and V4 most slowly. From this, we can just extract the frequency column and reshape it into an
array using the dim argument. The level names are assigned to dimnames(TV) and the variable
names to names(dimnames(TV)).

> TV <- array(tv_data[,5], dim = c(5, 11, 5, 3))
> dimnames(TV) <-
+ list(c("Mon", "Tue", "Wed", "Thu", "Fri"),
+ c("8:00", "8:15", "8:30", "8:45", "9:00", "9:15",
+ "9:30", "9:45", "10:00", "10:15", "10:30"),
+ c("ABC", "CBS", "NBC", "Fox", "Other"),
+ c("Off", "Switch", "Persist"))
> names(dimnames(TV)) <- c("Day", "Time", "Network", "State")

More generally (even if there are missing cells), we can use xtabs() to do the cross-tabulation,
using V5 as the frequency variable. Here’s how to do this same operation with xtabs():

> TV <- xtabs(V5 ~ ., data = tv_data)
> dimnames(TV) <-
+ list(Day = c("Mon", "Tue", "Wed", "Thu", "Fri"),
+ Time = c("8:00", "8:15", "8:30", "8:45", "9:00", "9:15",
+ "9:30", "9:45", "10:00", "10:15", "10:30"),
+ Network = c("ABC", "CBS", "NBC", "Fox", "Other"),
+ State = c("Off", "Switch", "Persist"))

Note that in the lines above, the variable names are assigned directly as the names of the elements
in the dimnames list.
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2.9.2 Subsetting and collapsing

For many purposes, the 4-way table TV is too large and awkward to work with. Among the networks,
Fox and Other occur infrequently, so we will remove them. We can also cut it down to a 3-way table
by considering only viewers who persist with the current station.8

> TV <- TV[,,1:3,] # keep only ABC, CBS, NBC
> TV <- TV[,,,3] # keep only Persist -- now a 3 way table
> structable(TV)

Time 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30
Day Network
Mon ABC 146 151 156 83 325 350 386 340 352 280 278

CBS 337 293 304 233 311 251 241 164 252 265 272
NBC 263 219 236 140 226 235 239 246 279 263 283

Tue ABC 244 181 231 205 385 283 345 192 329 351 364
CBS 173 180 184 109 218 235 256 250 274 263 261
NBC 315 254 280 241 370 214 195 111 188 190 210

Wed ABC 233 161 194 156 339 264 279 140 237 228 203
CBS 158 126 207 59 98 103 122 86 109 105 110
NBC 134 146 166 66 194 230 264 143 274 289 306

Thu ABC 174 183 197 181 187 198 211 86 110 122 117
CBS 196 185 195 104 106 116 116 47 102 84 84
NBC 515 463 472 477 590 473 446 349 649 705 747

Fri ABC 294 281 305 239 278 246 245 138 246 232 233
CBS 130 144 154 81 129 153 136 126 138 136 152
NBC 195 220 248 160 172 164 169 85 183 198 204

Finally, for some purposes, we might also want to collapse the 11 Time’s into a smaller number.
Here, we use collapse.table() (see Section 2.7.2), which was designed for this purpose.

> TV2 <- collapse.table(TV,
+ Time = c(rep("8:00-8:59", 4),
+ rep("9:00-9:59", 4),
+ rep("10:00-10:44", 3)))
> structable(Day ~ Time + Network, TV2)

Day Mon Tue Wed Thu Fri
Time Network
8:00-8:59 ABC 536 861 744 735 1119

CBS 1167 646 550 680 509
NBC 858 1090 512 1927 823

9:00-9:59 ABC 1401 1205 1022 682 907
CBS 967 959 409 385 544
NBC 946 890 831 1858 590

10:00-10:44 ABC 910 1044 668 349 711
CBS 789 798 324 270 426
NBC 825 588 869 2101 585

Congratulations! If you followed the operations described above, you are ready for the material
described in the rest of the book. If not, try working through some of exercises below.

2.10 Lab exercises

Exercise 2.1 The packages vcd and vcdExtra contain many data sets with some examples of anal-
ysis and graphical display. The goal of this exercise is to familiarize yourself with these resources.

8This relies on the fact that indexing an array drops dimensions of length 1 by default, using the argument drop =
TRUE; the result is coerced to the lowest possible dimension.
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You can get a brief summary of these using the function datasets() from vcdExtra. Use the
following to get a list of these with some characteristics and titles.

> ds <- datasets(package = c("vcd", "vcdExtra"))
> str(ds, vec.len = 2)

'data.frame': 74 obs. of 5 variables:
$ Package: chr "vcd" "vcd" ...
$ Item : chr "Arthritis" "Baseball" ...
$ class : chr "data.frame" "data.frame" ...
$ dim : chr "84x5" "322x25" ...
$ Title : chr "Arthritis Treatment Data" "Baseball Data" ...

(a) How many data sets are there altogether? How many are there in each package?
(b) Make a tabular display of the frequencies by Package and class.
(c) Choose one or two data sets from this list, and examine their help files (e.g., help(Arthritis)

or ?Arthritis). You can use, e.g., example(Arthritis) to run the R code for a given
example.

Exercise 2.2 For each of the following data sets in the vcdExtra package, identify which are re-
sponse variable(s) and which are explanatory. For factor variables, which are unordered (nominal)
and which should be treated as ordered? Write a sentence or two describing substantitive questions
of interest for analysis of the data. (Hint: use data(foo, package="vcdExtra") to load,
and str(foo), help(foo) to examine data set foo.)

(a) Abortion opinion data: Abortion
(b) Caesarian Births: Caesar
(c) Dayton Survey: DaytonSurvey
(d) Minnesota High School Graduates: Hoyt

Exercise 2.3 The data set UCBAdmissions is a 3-way table of frequencies classified by Admit,
Gender, and Dept.

(a) Find the total number of cases contained in this table.
(b) For each department, find the total number of applicants.
(c) For each department, find the overall proportion of applicants who were admitted.
(d) Construct a tabular display of department (rows) and gender (columns), showing the propor-

tion of applicants in each cell who were admitted relative to the total applicants in that cell.

Exercise 2.4 The data set DanishWelfare in vcd gives a 4-way, 3 × 4 × 3 × 5 table as a
data frame in frequency form, containing the variable Freq and four factors, Alcohol, Income,
Status, and Urban. The variable Alcohol can be considered as the response variable, and the
others as possible predictors.

(a) Find the total number of cases represented in this table.
(b) In this form, the variables Alcohol and Income should arguably be considered ordered

factors. Change them to make them ordered.
(c) Convert this data frame to table form, DanishWelfare.tab, a 4-way array containing the

frequencies with appropriate variable names and level names.
(d) The variable Urban has 5 categories. Find the total frequencies in each of these. How would

you collapse the table to have only two categories, City, Non-city?
(e) Use structable() or ftable() to produce a pleasing flattened display of the frequen-

cies in the 4-way table. Choose the variables used as row and column variables to make it
easier to compare levels of Alcohol across the other factors.
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Exercise 2.5 The data set UKSoccer in vcd gives the distributions of number of goals scored by
the 20 teams in the 1995/96 season of the Premier League of the UK Football Association.

> data("UKSoccer", package = "vcd")
> ftable(UKSoccer)

Away 0 1 2 3 4
Home
0 27 29 10 8 2
1 59 53 14 12 4
2 28 32 14 12 4
3 19 14 7 4 1
4 7 8 10 2 0

This two-way table classifies all 20 × 19 = 380 games by the joint outcome (Home, Away), the
number of goals scored by the Home and Away teams. The value 4 in this table actually represents
4 or more goals.

(a) Verify that the total number of games represented in this table is 380.
(b) Find the marginal total of the number of goals scored by each of the home and away teams.
(c) Express each of the marginal totals as proportions.
(d) Comment on the distribution of the numbers of home-team and away-team goals. Is there any

evidence that home teams score more goals on average?

Exercise 2.6 The one-way frequency table Saxony in vcd records the frequencies of families
with 0, 1, 2, . . . 12 male children, among 6115 families with 12 children. This data set is used
extensively in Chapter 3.

> data("Saxony", package = "vcd")
> Saxony

nMales
0 1 2 3 4 5 6 7 8 9 10 11 12
3 24 104 286 670 1033 1343 1112 829 478 181 45 7

Another data set, Geissler, in the vcdExtra package, gives the complete tabulation of all com-
binations of boys and girls in families with a given total number of children (size). The task
here is to create an equivalent table, Saxony12 from the Geissler data.

> data("Geissler", package = "vcdExtra")
> str(Geissler)

'data.frame': 90 obs. of 4 variables:
$ boys : int 0 0 0 0 0 0 0 0 0 0 ...
$ girls: num 1 2 3 4 5 6 7 8 9 10 ...
$ size : num 1 2 3 4 5 6 7 8 9 10 ...
$ Freq : int 108719 42860 17395 7004 2839 1096 436 161 66 30 ...

(a) Use subset() to create a data frame, sax12 containing the Geissler observations in
families with size==12.

(b) Select the columns for boys and Freq.
(c) Use xtabs() with a formula, Freq ~ boys, to create the one-way table.
(d) Do the same steps again to create a one-way table, Saxony11, containing similar frequencies

for families of size==11.
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Exercise 2.7 ? Interactive coding of table factors: Some statistical and graphical methods for con-
tingency tables are implemented only for two-way tables, but can be extended to 3+-way tables by
recoding the factors to interactive combinations along the rows and/or columns, in a way similar to
what ftable() and structable() do for printed displays.

For the UCBAdmissions data, produce a two-way table object, UCB.tab2, that has the com-
binations of Admit and Gender as the rows, and Dept as its columns, to look like the result
below:

Dept
Admit:Gender A B C D E F
Admitted:Female 89 17 202 131 94 24
Admitted:Male 512 353 120 138 53 22
Rejected:Female 19 8 391 244 299 317
Rejected:Male 313 207 205 279 138 351

(a) Try this the long way: convert UCBAdmissions to a data frame (as.data.frame()),
manipulate the factors (e.g., interaction()), then convert back to a table
(as.data.frame()).

(b) Try this the short way: both ftable() and structable() have as.matrix()methods
that convert their result to a matrix.

Exercise 2.8 The data set VisualAcuity in vcd gives a 4 × 4 × 2 table as a frequency data
frame.

> data("VisualAcuity", package = "vcd")
> str(VisualAcuity)

'data.frame': 32 obs. of 4 variables:
$ Freq : num 1520 234 117 36 266 ...
$ right : Factor w/ 4 levels "1","2","3","4": 1 2 3 4 1 2 3 4 1 2 ...
$ left : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 2 2 2 2 3 3 ...
$ gender: Factor w/ 2 levels "male","female": 2 2 2 2 2 2 2 2 2 2 ...

(a) From this, use xtabs() to create two 4× 4 frequency tables, one for each gender.
(b) Use structable() to create a nicely organized tabular display.
(c) Use xtable() to create a LATEX or HTML table.
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Discrete data often follow various theoretical probability models. Graphic displays are
used to visualize goodness of fit, to diagnose an appropriate model, and determine the
impact of individual observations on estimated parameters.

Not everything that counts can be counted, and not everything that can be counted
counts.

Albert Einstein

Discrete frequency distributions often involve counts of occurrences of events, such as accident
fatalities, incidents of terrorism or suicide, words in passages of text, or blood cells with some
characteristic. Often interest is focused on how closely such data follow a particular probability
distribution, such as the binomial, Poisson, or geometric distribution, which provide the basis for
generating mechanisms that might give rise to the data. Understanding and visualizing such dis-
tributions in the simplest case of an unstructured sample provides a building block for generalized
linear models (Chapter 11) where they serve as one component. They also provide the basis for a
variety of recent extensions of regression models for count data (Chapter 11), some of which ac-
count for the excess counts of zeros (zero-inflated models) caused by left- or right-truncation often
encountered in statistical practice.

This chapter describes the well-known discrete frequency distributions: the binomial, Poisson,
negative binomial, geometric, and logarithmic series distributions in the simplest case of an unstruc-
tured sample. The chapter begins with simple graphical displays (line graphs and bar charts) to view
the distributions of empirical data and theoretical frequencies from a specified discrete distribution.

65
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The chapter then describes methods for fitting data to a distribution of a given form, and presents
simple but effective graphical methods that can be used to visualize goodness of fit, to diagnose an
appropriate model (e.g., does a given data set follow the Poisson or negative binomial?) and to
determine the impact of individual observations on estimated parameters.

3.1 Introduction to discrete distributions

Discrete data analysis is concerned with the study of the tabulation of one or more types of events,
often categorized into mutually exclusive and exhaustive categories. Binary Events having two
outcome categories include the toss of a coin (head/tails), sex of a child (male/female), survival
of a patient following surgery (lived/died), and so forth. Polytomous Events have more outcome
categories, which may be ordered (rating of impairment: low/medium/high, by a physician) and
possibly numerically valued (number of dots (pips), 1–6 on the toss of a die) or unordered (political
party supported: Liberal, Conservative, Greens, Socialist).

In this chapter, we focus largely on one-way frequency tables for a single numerically valued
variable. Probability models for such data provide the opportunity to describe or explain the struc-
ture in such data, in that they entail some data-generating mechanism and provide the basis for
testing scientific hypotheses and predicting future results. If a given probability model does not fit
the data, this can often be a further opportunity to extend understanding of the data, or the underlying
substantive theory, or both.

The remainder of this section gives a few substantive examples of situations where the well-
known discrete frequency distributions (binomial, Poisson, negative binomial, geometric, and log-
arithmic series) might reasonably apply, at least approximately. The mathematical characteristics
and properties of these theoretical distributions are postponed to Section 3.2.

In many cases, the data at hand pertain to two types of variables in a one-way frequency table.
There is a basic outcome variable, k, taking integer values, k = 0, 1, . . ., and called a count. For
each value of k, we also have a frequency, nk that the count k was observed in some sample. For
example, in the study of children in families, the count variable k could be the total number of
children or the number of male children; the frequency variable, nk, would then give the number of
families with that basic count k.

3.1.1 Binomial data
Binomial-type data arise as the discrete distribution of the number of “success” events in n indepen-
dent binary trials, each of which yields a success (yes/no, head/tail, lives/dies, male/female) with a
constant probability p.

Sometimes, as in Example 3.1 below, the available data record only the number of successes
in n trials, with separate such observations recorded over time or space. More commonly, as in
Example 3.2 and Example 3.3, we have available data on the frequency nk of k = 0, 1, 2, . . . n
successes in the n trials.

EXAMPLE 3.1: Arbuthnot data
Sex ratios, such as births of male to female children, have long been of interest in population

studies and demography. Indeed, in 1710, John Arbuthnot (Arbuthnot, 1710) used data on the ratios
of male to female christenings in London from 1629–1710 to carry out the first known significance
test. The data for these 82 years showed that in every year there were more boys than girls. He
calculated that, under the assumption that male and female births were equally likely, the probability
of 82 years of more males than females was vanishingly small, (Pr ≈ 4.14× 10−25). He used this
to argue that a nearly constant birth ratio > 1 (or Pr(Male) > 0.5) could be interpreted to show the
guiding hand of a divine being.

Arbuthnot’s data, along with some other related variables, are available in Arbuthnot in the
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Figure 3.1: Arbuthnot’s data on male/female sex ratios in London, 1629–1710, together with a
(loess) smoothed curve (blue) over time and the mean Pr(Male).

HistData (Friendly, 2014a) package. For now, we simply display a plot of the probability of a male
birth over time. The plot in Figure 3.1 shows the proportion of males over years, with horizontal
lines at Pr(Male) = 0.5 and the mean, Pr(Male) = 0.517. Also shown is a (loess) smoothed curve,
which suggests that any deviation from a constant sex ratio is relatively small, but also showed some
systematic trend over time.

> data("Arbuthnot", package = "HistData")
> with(Arbuthnot, {
+ prob = Males / (Males + Females)
+ plot(x = Year, y = prob, type = "b",
+ ylim = c(0.5, 0.54), ylab = "Pr (Male)")
+ abline(h = 0.5, col = "red", lwd = 2)
+ abline(h = mean(prob), col = "blue")
+ lines(loess.smooth(Year, prob), col = "blue", lwd = 2)
+ text(x = 1640, y = 0.5, expression(H[0]: "Pr(Male)=0.5"),
+ pos = 3, col = "red")
+ })

Exercise 3.1 invites you to consider some other plots for this data. We return to this data in a
later chapter where we ask whether the variation around the mean can be explained by any other
considerations, or should just be considered random variation (see Exercise 7.1). 4

EXAMPLE 3.2: Families in Saxony
A related example of sex ratio data that ought to follow a binomial distribution comes from a

classic study by A. Geissler (1889). Geissler listed the data on the distributions of boys and girls in
families in Saxony for the period 1876–1885. In total, over four million births were recorded, and
the sex distribution in the family was available because the parents had to state the sex of all their
children on the birth certificate.

The complete data, classified by number of boys and number of girls (each 0–12) appear in Ed-
wards (1958, Table 1).1 Lindsey (1995, Table 6.2) selected only the 6115 families with 12 children,
and listed the frequencies by number of males. The data are shown in table form in Table 3.1 in the

1Edwards (1958) notes that over these 10 years, many parents will have had several children, and their family composition
is therefore recorded more than once. However, in families with a given number of children, each family can appear only
once.
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Table 3.1: Number of male children in 6115 Saxony families of size 12
Males (k) 0 1 2 3 4 5 6 7 8 9 10 11 12
Families (nk) 3 24 104 286 670 1,033 1,343 1,112 829 478 181 45 7
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Figure 3.2: Number of males in Saxony families of size 12.

standard form of a complete discrete distribution. The basic outcome variable, k = 0, 1, . . . , 12, is
the number of male children in a family, and the frequency variable, nk is the number of families
with that number of boys.

Figure 3.2 shows a bar plot of the frequencies in Table 3.1. It can be seen that the distribution is
quite symmetric. The questions of interest here are: (a) how close does the data follow a binomial
distribution, with a constant Pr(Male) = p? (b) is there evidence to reject the hypothesis that
p = 0.5?

> data("Saxony", package = "vcd")
> barplot(Saxony, xlab = "Number of males", ylab = "Number of families",
+ col = "lightblue", cex.lab = 1.5)

4

EXAMPLE 3.3: Weldon’s dice
Common examples of binomial distributions involve tossing coins or dice, where some event

outcome is considered a “success” and the number of successes (k) are tabulated in a long series of
trials to give the frequency (nk) of each basic count, k.

Perhaps the most industrious dice-tosser of all time, W. F. Raphael Weldon, an English evolu-
tionary biologist and joint founding editor of Biometrika (with Francis Galton and Karl Pearson),
tallied the results of throwing 12 dice 26,306 times. For his purposes, he considered the outcome of
5 or 6 pips showing on each die to be a success, and all other outcomes as failures.

Weldon reported his results in a letter to Francis Galton dated February 2, 1894, in order “to
judge whether the differences between a series of group frequencies and a theoretical law . . . were
more than might be attributed to the chance fluctuations of random sampling” (Kemp and Kemp,
1991). In his seminal paper, Pearson (1900) used Weldon’s data to illustrate the χ2 goodness-of-fit
test, as did Kendall and Stuart (1963, Table 5.1, p. 121).

These data are shown here as Table 3.2, in terms of the number of occurrences of a 5 or 6 in the
throw of 12 dice. If the dice were all identical and perfectly fair (balanced), one would expect that
p = Pr{5 or 6} = 1

3 and the distribution of the number of 5 or 6 would be binomial.
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Table 3.2: Frequencies of 5s or 6s in throws of 12 dice
# 5s or 6s (k) 0 1 2 3 4 5 6 7 8 9 10+
Frequency (nk) 185 1,149 3,265 5,475 6,114 5,194 3,067 1,331 403 105 18
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Figure 3.3: Weldon’s dice data, frequency distribution of 5s and 6s in throws of 12 dice.

A peculiar feature of these data as presented by Kendall and Stuart (not uncommon in discrete
distributions) is that the frequencies of 10–12 successes are lumped together.2 This grouping must
be taken into account in fitting the distribution. This dataset is available as WeldonDice in the
vcd package. The distribution is plotted in Figure 3.3.

> data("WeldonDice", package = "vcd")
> dimnames(WeldonDice)$n56[11] <- "10+"
> barplot(WeldonDice, xlab = "Number of 5s and 6s", ylab = "Frequency",
+ col = "lightblue", cex.lab = 1.5)

4

3.1.2 Poisson data

Data of Poisson type arise when we observe the counts of events k within a fixed interval of time or
space (length, area, volume) and tabulate their frequencies, nk. For example, we may observe the
number of radioactive particles emitted by a source per second or number of births per hour, or the
number of tiger or whale sightings within some geographical regions.

In contrast to binomial data, where the counts are bounded below and above, in Poisson data the
counts k are bounded below at 0, but can take integer values with no fixed upper limit. One defining
characteristic for the Poisson distribution is for rare events, which occur independently with a small
and constant probability, p, in small intervals, and we count the number of such occurrences.

Several examples of data of this general type are given below.

EXAMPLE 3.4: Death by horse kick
One of the oldest and best known examples of a Poisson distribution is the data from von

Bortkiewicz (1898) on deaths of soldiers in the Prussian army from kicks by horses and mules,

2The unlumped entries are, for (number of 5s or 6s: frequency) — (10: 14); (11: 4), (12:0), given by Labby (2009). In
this remarkable paper, Labby describes a mechanical device he constructed to repeat Weldon’s experiment physically and
automate the counting of outcomes. He created electronics to roll 12 dice in a physical box, and hooked that up to a webcam
to capture an image of each toss and used image processing software to record the counts.
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Table 3.3: von Bortkiewicz’s data on deaths by horse kicks
Number of deaths (k) 0 1 2 3 4 Sum
Frequency (nk) 109 65 22 3 1 200
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Figure 3.4: HorseKicks data, distribution of the number of deaths in 200 corps-years.

shown in Table 3.3. Ladislaus von Bortkiewicz, an economist and statistician, tabulated the number
of soldiers in each of 14 army corps in the 20 years from 1875–1894 who died after being kicked
by a horse (Andrews and Herzberg, 1985, p. 18). Table 3.3 shows the data used by Fisher (1925)
for 10 of these army corps, summed over 20 years, giving 200 ‘corps-year’ observations. In 109
corps-years, no deaths occurred; 65 corps-years had one death, etc.

The data set is available as HorseKicks in the vcd package. The distribution is plotted in
Figure 3.4.

> data("HorseKicks", package = "vcd")
> barplot(HorseKicks, xlab = "Number of deaths", ylab = "Frequency",
+ col = "lightblue", cex.lab = 1.5)

4

EXAMPLE 3.5: Federalist Papers
In 1787–1788, Alexander Hamilton, John Jay, and James Madison wrote a series of newspaper

essays to persuade the voters of New York State to ratify the U.S. Constitution. The essays were
titled The Federalist Papers and all were signed with the pseudonym “Publius.” Of the 77 papers
published, the author(s) of 65 are known, but both Hamilton and Madison later claimed sole au-
thorship of the remaining 12. Mosteller and Wallace (1963, 1984) investigated the use of statistical
methods to identify authors of disputed works based on the frequency distributions of certain key
function words, and concluded that Madison had indeed authored the 12 disputed papers.3

Table 3.4 shows the distribution of the occurrence of one of these “marker” words, the word may
in 262 blocks of text (each about 200 words long) from issues of the Federalist Papers and other
essays known to be written by James Madison. Read the table as follows: in 156 blocks, the word
may did not occur; it occurred once in 63 blocks, etc. The distribution is plotted in Figure 3.5.

3It should be noted that this is a landmark work in the development of statistical methods and their application to the
analysis of texts and cases of disputed authorship. In addition to may, they considered many such marker words, such as any,
by, from, upon, and so forth. Among these, the word upon was the best discriminator between the works known by Hamilton
(3 per 1000 words) and Madison (0.16 per 1000 words). In this work, they pioneered the use of Bayesian discriminant
analysis, and the use of cross-validation to assess the stability of estimates and their conclusions.
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Table 3.4: Number of occurrences of the word may in texts written by James Madison
Occurrences of may (k) 0 1 2 3 4 5 6 Sum
Blocks of text (nk) 156 63 29 8 4 1 1 262
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Figure 3.5: Federalist Papers data, distribution of the uses of the word may.

> data("Federalist", package = "vcd")
> barplot(Federalist,
+ xlab = "Occurrences of 'may'",
+ ylab = "Number of blocks of text",
+ col = "lightgreen", cex.lab = 1.5)

4

EXAMPLE 3.6: London cycling deaths
Aberdein and Spiegelhalter (2013) observed that from November 5–13, 2013, six people were

killed while cycling in London. How unusual is this number of deaths in less than a two-week
period? Was this a freak occurrence, or should Londoners petition for cycling lanes and greater
road safety? To answer these questions, they obtained data from the UK Department of Transport
Road Safety Data from 2005–2012 and selected all accident fatalities of cyclists within the city of
London.

It seems reasonable to assume that, in any short period of time, deaths of people riding bicycles
are independent events. If, in addition, the probability of such events is constant over this time span,
the Poisson distribution should describe the distribution of 0, 1, 2, 3, . . . deaths. Then, an answer to
the main question can be given in terms of the probability of six (or more) deaths in a comparable
period of time.

Their data, comprising 208 counts of deaths in the fortnightly periods from January 2005 to
December 2012, are contained in the data set CyclingDeaths in vcdExtra. To work with the
distribution, we first convert this to a one-way table.

> data("CyclingDeaths", package = "vcdExtra")
> CyclingDeaths.tab <- table(CyclingDeaths$deaths)
> CyclingDeaths.tab

0 1 2 3
114 75 14 5
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Figure 3.6: Frequencies of number of cyclist deaths in two-week periods in London, 2005–2012.

The maximum number of deaths was 3, which occurred in only 5 two-week periods. The distri-
bution is plotted in Figure 3.6.

> barplot(CyclingDeaths.tab,
+ xlab = "Number of deaths", ylab = "Number of fortnights",
+ col = "pink", cex.lab = 1.5)

We return to this data in Example 3.10 and answer the question of how unusual six or more
deaths would be in a Poisson distribution.

4

3.1.3 Type-token distributions

There are a variety of other types of discrete data distributions. One important class is type-token
distributions, where the basic count k is the number of distinct types of some observed event, k =
1, 2, . . . and the frequency, nk, is the number of different instances observed. For example, distinct
words in a book, words that subjects list as members of the semantic category “fruit,” musical notes
that appear in a score, and species of animals caught in traps can be considered as types, and the
occurrences of of those type comprise tokens.

This class differs from the Poisson type considered above in that the frequency for value k = 0
is unobserved. Thus, questions like (a) How many words did Shakespeare know? (b) How many
words in the English language are members of the “fruit” category? (c) How many wolves remain
in Canada’s Northwest territories? depend on the unobserved count for k = 0. They cannot easily
be answered without appeal to additional information or statistical theory.

EXAMPLE 3.7: Butterfly species in Malaya
In studies of the diversity of animal species, individuals are collected and classified by species.

The distribution of the number of species (types) where k = 1, 2, . . . individuals (tokens) were
collected forms a kind of type-token distribution. An early example of this kind of distribution was
presented by Fisher et al. (1943). Table 3.5 lists the number of individuals of each of 501 species
of butterfly collected in Malaya. There were thus 118 species for which just a single instance was
found, 74 species for which two individuals were found, down to 3 species for which 24 individuals
were collected. Fisher et al. note, however, that the distribution was truncated at k = 24. Type-token
distributions are often J-shaped, with a long upper tail, as we see in Figure 3.7.
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Table 3.5: Number of butterfly species nk for which k individuals were collected
Individuals (k) 1 2 3 4 5 6 7 8 9 10 11 12
Species (nk) 118 74 44 24 29 22 20 19 20 15 12 14
Individuals (k) 13 14 15 16 17 18 19 20 21 22 23 24 Sum
Species (nk) 6 12 6 9 9 6 10 10 11 5 3 3 501
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Figure 3.7: Butterfly species in Malaya.

> data("Butterfly", package = "vcd")
> barplot(Butterfly, xlab = "Number of individuals",
+ ylab = "Number of species", cex.lab = 1.5)

4

3.2 Characteristics of discrete distributions

This section briefly reviews the characteristics of some of the important discrete distributions en-
countered in practice and illustrates their use with R. An overview of these distributions is shown
in Table 3.6. For more detailed information on these and other discrete distributions, Johnson et al.
(1992) and Wimmer and Altmann (1999) present the most comprehensive treatments; Zelterman
(1999, Chapter 2) gives a compact summary.

For each distribution, we describe properties and generating mechanisms, and show how its

Table 3.6: Discrete probability distributions

Discrete
distribution

Probability
function, p(k) Parameters

Binomial
(
n
k

)
pk(1− p)n−k

p = Pr (success);
n = # trials

Poisson e−λλk/k! λ = mean

Negative binomial
(
n+k−1

k

)
pn(1− p)k p; n = # successful trials

Geometric p(1− p)k p

Logarithmic series θk/[−k log(1− θ)] θ
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Table 3.7: R functions for discrete probability distributions

Discrete
distribution

Density (pmf)
function

Cumulative
(CDF)

Quantile
CDF−1

Random #
generator

Binomial dbinom() pbinom() qbinom() rbinom()

Poisson dpois() ppois() qpois() rpois()

Negative binomial dnbinom() pnbinom() qnbinom() rnbinom()

Geometric dgeom() pgeom() qgeom() rgeom()

Logarithmic series dlogseries() plogseries() qlogseries() rlogseries()

parameters can be estimated and how to plot the frequency distribution. R has a wealth of functions
for a wide variety of distributions. For ease of reference, their names and types for the distributions
covered here are shown in Table 3.7. The naming scheme is simple and easy to remember: for each
distribution, there are functions, with a prefix letter, d, p, q, r, followed by the name for that class
of distribution:4

d a density function,5 Pr{X = k} ≡ p(k) for the probability that the variable X takes the value k.
p a cumulative probability/density function, or CDF, F (k) =

∑
X≤k p(k).

q a quantile function, the inverse of the CDF, k = F−1(p). The quantile is defined as the smallest
value x such that F (k) ≥ p.

r a random number generating function for that distribution.

In the R console, help(Distributions) gives an overview listing of the distribution functions
available in the stats package.

3.2.1 The binomial distribution

The binomial distribution, Bin(n, p), arises as the distribution of the number k of events of interest
that occur in n independent trials when the probability of the event on any one trial is the constant
value p = Pr(event). For example, if 15% of the population has red hair, the number of redheads
in randomly sampled groups of n = 10 might follow a binomial distribution, Bin(10, 0.15); in
Weldon’s dice data (Example 3.3), the probability of a 5 or 6 should be 1

3 on any one trial, and the
number of 5s or 6s in tosses of 12 dice would follow Bin(12, 13 ).

Over n independent trials, the number of events k may range from 0 to n; if X is a random
variable with a binomial distribution, the probability that X = k is given by

Bin(n, p) : Pr{X = k} ≡ p(k) =

(
n

k

)
pk(1− p)n−k k = 0, 1, . . . , n , (3.1)

where
(
n
k

)
= n!/k!(n− k)! is the number of ways of choosing k out of n.

The first three (central) moments of the binomial distribution are as follows (letting q = 1− p),

Mean(X) = np

Var(X) = npq

Skew(X) = npq(q − p) .

4The CRAN Task View on Probability Distributions, http://cran.r-project.org/web/views/
Distributions.html, provides a general overview and lists a wide variety of contributed packages for special-
ized distributions, discrete and continuous.

5For discrete random variables this is usually called the probability mass function (pmf).

http://cran.r-project.org/web/views/Distributions.html
http://cran.r-project.org/web/views/Distributions.html
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Figure 3.8: Binomial distribution for k = 0, . . . , 12 successes in 12 trials and p=1/3.

It is easy to verify that the binomial distribution has its maximum variance when p = 1
2 . It is

symmetric (Skew(x)=0) when p = 1
2 , and negatively (positively) skewed when p < 1

2 (p > 1
2 ).

If we are given data in the form of a discrete (binomial) distribution (and n is known), then the
maximum likelihood estimator6 of p can be obtained as the weighted mean of the values k with
weights nk,

p̂ =
x̄

n
=

(
∑
k k × nk)/

∑
k nk

n
,

and has sampling variance V(p̂) = pq/n.

3.2.1.1 Calculation and visualization

As indicated in Table 3.7 (but without listing the parameters of these functions), binomial probabili-
ties can be calculated with dbinom(x, n, p), where x is a vector of the number of successes in
n trials and p is the probability of success on any one trial. Cumulative probabilities, summed to a
vector of quantiles, Q, can be calculated with pbinom(Q, n, p), and the quantiles (the smallest
value x such that F (x) ≥ P ) with qbinom(P, n, p). To generate N random observations from
a binomial distribution with n trials and success probability p use rbinom(N, n, p)7.

For example, to find and plot the binomial probabilities corresponding to Weldon’s tosses of 12
dice, with k = 0, . . . , 12 and p = 1

3 , we could do the following (giving Figure 3.8):

> k <- 0 : 12
> Pk <- dbinom(k, 12, 1/3)
> b <- barplot(Pk, names.arg = k,
+ xlab = "Number of successes", ylab = "Probability")
> lines(x = b, y = Pk, col = "red")

We illustrate other styles for plotting in Section 3.2.2, Example 3.11 below.

EXAMPLE 3.8: Weldon’s dice
Going a bit further, we can compare Weldon’s data with the theoretical binomial distribution

as shown below. Because the WeldonDice data collapsed the frequencies for 10–12 successes as
10+, we do the same with the binomial probabilities. The expected frequencies (Exp), if Weldon’s
dice tosses obeyed the binomial distribution, are calculated as N × p(k) for N = 26, 306 tosses.

6For the purpose of this book, we assume at least a basic familiarity with the idea of maximum likelihood estimation. A
useful brief introduction to this topic for binomial data is Fox (2015, Section D.6), available online.

7Note that the actual R function arguments differ from the ones used here.
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In addition, we compute the differences of the observed (Freq) and expected (Exp) frequencies
as column Diff, to be used for the χ2 test for goodness of fit described later in Section 3.3, but a
glance reveals that these are all negative for k = 0, . . . 4 and positive thereafter.

> Weldon_df <- as.data.frame(WeldonDice) # convert to data frame
>
> k <- 0 : 12 # same as seq(0, 12)
> Pk <- dbinom(k, 12, 1/3) # binomial probabilities
> Pk <- c(Pk[1:10], sum(Pk[11:13])) # sum values for 10+
> Exp <- round(26306 * Pk, 5) # expected frequencies
> Diff <- Weldon_df$Freq - Exp # raw residuals
> Chisq <- Diff^2 / Exp
> data.frame(Weldon_df, Prob = round(Pk, 5), Exp, Diff, Chisq)

n56 Freq Prob Exp Diff Chisq
1 0 185 0.00771 202.749 -17.7495 1.55386
2 1 1149 0.04624 1216.497 -67.4968 3.74503
3 2 3265 0.12717 3345.366 -80.3661 1.93064
4 3 5475 0.21195 5575.610 -100.6102 1.81548
5 4 6114 0.23845 6272.561 -158.5614 4.00821
6 5 5194 0.19076 5018.049 175.9509 6.16947
7 6 3067 0.11127 2927.195 139.8047 6.67716
8 7 1331 0.04769 1254.512 76.4877 4.66346
9 8 403 0.01490 392.035 10.9649 0.30668
10 9 105 0.00331 87.119 17.8811 3.67008
11 10+ 18 0.00054 14.305 3.6947 0.95424

4

Finally, we can use programming features in R to calculate and plot probabilities for binomial
distributions over a range of both k and p as follows, for the purposes of graphing the distributions as
one or both varies. The following code uses outer() to create a 13×4 matrix Prob containing the
result of dbinom() for all combinations of k = 0:12 and p = c(1/6, 1/3, 1/2, 2/3).
These values are then supplied as arguments to dbinom().

> p <- c(1/6, 1/3, 1/2, 2/3)
> k <- 0 : 12
> Prob <- outer(k, p, function(k, p) dbinom(k, 12, p))
> str(Prob)

num [1:13, 1:4] 0.1122 0.2692 0.2961 0.1974 0.0888 ...

In this form, each column of Prob can be most easily plotted against k using matplot().
The following code generates Figure 3.9.

> col <- palette()[2:5]
> matplot(k, Prob,
+ type = "o", pch = 15 : 17, col = col, lty = 1,
+ xlab = "Number of Successes", ylab = "Probability")
> legend("topright", legend = c("1/6","1/3","1/2","2/3"),
+ pch = 15 : 17, lty = 1, col = col, title = "Pr(Success)")

3.2.2 The Poisson distribution
The Poisson distribution gives the probability of an event occurring k = 0, 1, 2, . . . times over a
large number of independent “trials,” when the probability, p, that the event occurs on any one trial
(in time or space) is small and constant. Hence, the Poisson distribution is usually applied to the
study of rare events such as highway accidents at a particular location, deaths from horse kicks,
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Figure 3.9: Binomial distributions for k = 0, . . . , 12 successes in n = 12 trials, and four values of
p.

or defects in a well-controlled manufacturing process. Other applications include: the number of
customers contacting a call center per unit time; the number of insurance claims per unit region or
unit time; number of particles emitted from a small radioactive sample.

For the Poisson distribution, the probability function is

Pois(λ) : Pr{X = k} ≡ p(k) =
e−λ λk

k!
k = 0, 1, . . . (3.2)

where the rate parameter, λ (> 0), turns out to be the mean of the distribution. The first three
(central) moments of the Poisson distribution are:

Mean(X) = λ

Var(X) = λ

Skew(X) = λ−1/2

So, the mean and variance of the Poisson distribution are always the same, which is sometimes
used to identify a distribution as Poisson. For the binomial distribution, the mean (Np) is always
greater than the variance (Npq); for other distributions (negative binomial and geometric) the mean
is less than the variance. The Poisson distribution is always positively skewed, but skewness de-
creases as λ increases.

The maximum likelihood estimator of the parameter λ in Eqn. (3.2) is just the mean of the
distribution,

λ̂ = x̄ =

∑
k k nk∑
k nk

. (3.3)

Hence, the expected frequencies can be estimated by substituting the sample mean into Eqn. (3.2)
and multiplying by the total sample size N .

There are many useful properties of the Poisson distribution.8 Among these are:

• Poisson variables have a nice reproductive property: ifX1, X2, . . . Xm are independent Poisson
variables with the same parameter λ, then their sum,

∑
Xi is a Poisson variate with parameter

mλ; if the Poisson parameters differ, the sum is still Poisson with parameter
∑
λi.

• For two or more independent Poisson variables, X1 ∼ Pois(λ1), X2 ∼ Pois(λ2), . . ., with
rate parameters λ1, λ2 . . ., the distribution of any Xi, conditional on their sum,

∑
j Xj = n, is

binomial, Bin(n, p), where p = λi/
∑
j λj .

8See: http://en.wikipedia.org/wiki/Poisson_distribution.

http://en.wikipedia.org/wiki/Poisson_distribution
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Table 3.8: Goals scored by home and away teams in 380 games in the Premier Football League,
1995/96 season

Home Away Team Goals
Team 0 1 2 3 4+ Total
Goals

0 27 29 10 8 2 76
1 59 53 14 12 4 142
2 28 32 14 12 4 90
3 19 14 7 4 1 45

4+ 7 8 10 2 0 27
Total 140 136 55 38 11 380

• As λ increases, the Poisson distribution becomes increasingly symmetric, and approaches the
normal distribution N(λ, λ) with mean and variance λ as λ → ∞. The approximation is quite
good with λ > 20.

• If X ∼ Pois(λ), then
√
X converges much faster to a normal distribution N(λ, 14 ), with mean√

λ and constant variance 1
4 . Hence, the square root transformation is often recommended as a

variance stabilizing transformation for count data when classical methods (ANOVA, regression)
assuming normality are employed.

EXAMPLE 3.9: UK soccer scores
Table 3.8 gives the distributions of goals scored by the 20 teams in the 1995/96 season of the

Premier League of the UK Football Association as presented originally by Lee (1997), and now
available as the two-way table UKSoccer in the vcd package. Over a season each team plays each
other team exactly once, so there are a total of 20 × 19 = 380 games. Because there may be an
advantage for the home team, the goals scored have been classified as “home team” goals and “away
team” goals in the table. Of interest for this example is whether the number of goals scored by home
teams and away teams follow Poisson distributions, and how this relates to the distribution of the
total number of goals scored.

If we assume that in any small interval of time there is a small, constant probability that the
home team or the away team may score a goal, the distributions of the goals scored by home teams
(the row totals in Table 3.8) may be modeled as Pois(λH ) and the distribution of the goals scored
by away teams (the column totals) may be modeled as Pois(λA).

If the number of goals scored by the home and away teams are independent9, we would expect
that the total number of goals scored in any game would be distributed as Pois(λH + λA). These
totals are shown in Table 3.9.

Table 3.9: Total goals scored in 380 games in the Premier Football League, 1995/95 season

Total goals 0 1 2 3 4 5 6 7
Number of games 27 88 91 73 49 31 18 3

As a preliminary check of the distributions for the home and away goals, we can determine if the

9This question is examined visually in Chapter 5 (Example 5.5) and Chapter 6 (Example 6.11), where we find that the
answer is “basically, yes.”
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means and variances are reasonably close to each other. If so, then the total goals variable should
also have a mean and variance equal to the sum of those statistics for the home and away goals.

In the R code below, we first convert the two-way frequency table UKSoccer to a data frame in
frequency form. We use within() to convert Home and Away to numeric variables, and calculate
Total as their sum.

> data("UKSoccer", package = "vcd")
>
> soccer.df <- as.data.frame(UKSoccer, stringsAsFactors = FALSE)
> soccer.df <- within(soccer.df, {
+ Home <- as.numeric(Home) # make numeric
+ Away <- as.numeric(Away) # make numeric
+ Total <- Home + Away # total goals
+ })
> str(soccer.df)

'data.frame': 25 obs. of 4 variables:
$ Home : num 0 1 2 3 4 0 1 2 3 4 ...
$ Away : num 0 0 0 0 0 1 1 1 1 1 ...
$ Freq : num 27 59 28 19 7 29 53 32 14 8 ...
$ Total: num 0 1 2 3 4 1 2 3 4 5 ...

To calculate the mean and variance of these variables, first expand the data frame to 380 individ-
ual observations using expand.dft(). Then use apply() over the rows to calculate the mean
and variance in each column.

> soccer.df <- expand.dft(soccer.df) # expand to ungrouped form
> apply(soccer.df, 2, FUN = function(x) c(mean = mean(x), var = var(x)))

Home Away Total
mean 1.4868 1.0632 2.5500
var 1.3164 1.1728 2.6175

The means are all approximately equal to the corresponding variances. More to the point, the
variance of the Total score is approximately equal to the sum of the individual variances. Note
also there does appear to be an advantage for the home team, of nearly half a goal.

4

EXAMPLE 3.10: London cycling deaths
A quick check of whether the number of deaths among London cyclists follows the Poisson

distribution can be carried out by calculating the mean and variance. The index of dispersion,
the ratio of the variance to the mean, is commonly used to quantify whether a set of observed
frequencies is more or less dispersed than a reference (Poisson) distribution.

> with(CyclingDeaths, c(mean = mean(deaths),
+ var = var(deaths),
+ ratio = mean(deaths) / var(deaths)))

mean var ratio
0.56731 0.52685 1.07679

Thus, there was an average of about 0.57 deaths per fortnight, or a bit more than 1 per month,
and no evidence for over- or underdispersion.

We can now answer the question of whether it was an extraordinary event to observe six deaths
in a two-week period, by calculating the probability of more than 5 deaths using ppois().
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> mean.deaths <- mean(CyclingDeaths$deaths)
> ppois(5, mean.deaths, lower.tail = FALSE)

[1] 2.8543e-05

This probability is extremely small, so we conclude that the occurrence of six deaths was a
singular event. The interpretation of this result might indicate an increased risk to cycling in London,
and might prompt further study of road safety. 4

3.2.2.1 Calculation and visualization

For the Poisson distribution, you can generate probabilities using dpois(x, lambda) for the
numbers of events in xwith rate parameter lambda. As we did earlier for the binomial distribution,
we can calculate these for a collection of values of lambda by using expand.grid() to create
all combinations of the values of x we wish to plot.

EXAMPLE 3.11: Plotting styles for discrete distributions
In this example, we illustrate some additional styles for plotting discrete distributions, using

both lattice xyplot() and the ggplot2 package. The goal here is to visualize a collection of
Poisson distributions for varying values of λ.

We first create the 63 combinations of x = 0:20 for three values of λ, lambda = c(1,
4, 10), and use these columns as arguments to dpois(). Again, lambda is a numeric variable,
but the plotting methods are easier if this variable is converted to a factor.

> KL <- expand.grid(k = 0 : 20, lambda = c(1, 4, 10))
> pois_df <- data.frame(KL, prob = dpois(KL$k, KL$lambda))
> pois_df$lambda = factor(pois_df$lambda)
> str(pois_df)

'data.frame': 63 obs. of 3 variables:
$ k : int 0 1 2 3 4 5 6 7 8 9 ...
$ lambda: Factor w/ 3 levels "1","4","10": 1 1 1 1 1 1 1 1 1 1 ...
$ prob : num 0.3679 0.3679 0.1839 0.0613 0.0153 ...

Discrete distributions are often plotted as bar charts or in histogram-like form, as we did for
the examples in Section 3.1, rather than the line-graph form used for the binomial distribution in
Figure 3.9. With xyplot(), the plot style is controlled by the type argument, and the code
below uses type = c("h", "p") to get both histogram-like lines to the origin and points. As
well, the plot formula, prob ~ k | lambda instructs xyplot() to produce a multi-panel plot,
conditioned on values of lambda. These lines produce Figure 3.10.

> library(lattice)
> xyplot(prob ~ k | lambda, data = pois_df,
+ type = c("h", "p"), pch = 16, lwd = 4, cex = 1.25, layout = c(3, 1),
+ xlab = list("Number of events (k)", cex = 1.25),
+ ylab = list("Probability", cex = 1.25))

The line-graph plot style of Figure 3.9 has the advantage that it is easier to compare the separate
distributions in a single plot (using the groups argument) than across multiple panels (using a
conditioning formula). It has the disadvantages that (a) a proper legend is difficult to construct with
lattice, and (b) is difficult to read, because you have to visually coordinate the curves in the plot with
the values shown in the legend. Figure 3.11 solves both problems using the directlabels package.
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Figure 3.10: Poisson distributions for λ = 1, 4, 10, in a multi-panel display.
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Figure 3.11: Poisson distributions for λ = 1, 4, 10, using direct labels.

> mycol <- palette()[2:4]
> plt <- xyplot(prob ~ k, data = pois_df, groups = lambda,
+ type = "b", pch = 15 : 17, lwd = 2, cex = 1.25, col = mycol,
+ xlab = list("Number of events (k)", cex = 1.25),
+ ylab = list("Probability", cex = 1.25),
+ ylim = c(0, 0.4))
>
> library(directlabels)
> direct.label(plt, list("top.points", cex = 1.5, dl.trans(y = y + 0.1)))

Note that the plot constructed by xyplot() is saved as a ("trellis") object, plt. The function
direct.label() massages this to add the labels directly to each curve. In the second argument
above, "top.points" says to locate these at the maximum value on each curve.

Finally, we illustrate the use of ggplot2 to produce a single-panel, multi-line plot of these dis-
tributions. The basic plot uses aes(x = k, y = prob, ...) to produce a plot of prob vs.
k, assigning color and shape attributes to the values of lambda.
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Figure 3.12: Poisson distributions for λ = 1, 4, 10, using ggplot2.

> library(ggplot2)
> gplt <- ggplot(pois_df,
+ aes(x = k, y = prob, colour = lambda, shape = lambda)) +
+ geom_line(size = 1) + geom_point(size = 3) +
+ xlab("Number of events (k)") +
+ ylab("Probability")

ggplot2 allows most details of the plot to be modified using theme(). Here we use this to
move the legend inside the plot, and enlarge the axis labels and titles (producing Figure 3.12).

> gplt + theme(legend.position = c(0.8, 0.8)) + # manually move legend
+ theme(axis.text = element_text(size = 12),
+ axis.title = element_text(size = 14, face = "bold"))

4

3.2.3 The negative binomial distribution

The negative binomial distribution is a type of waiting-time distribution, but also arises in statistical
applications as a generalization of the Poisson distribution, allowing for overdispersion (variance >
mean). See Hilbe (2011) for a comprehensive treatment of negative binomial statistical models with
many applications in R.

One form of the negative binomial distribution (also called the Pascal distribution) arises when
a series of independent Bernoulli trials is observed with constant probability p of some event, and
we ask how many non-events (failures), k, it takes to observe n successful events. For example, in
tossing one die repeatedly, we may consider the outcome “1” as a “success” (with p = 1

6 ) and ask
about the probability of observing k = 0, 1, 2, . . . failures before getting n = 3 1s.

The probability function with parameters n (a positive integer, 0 < n <∞) and p (0 < p < 1)
gives the probability that k non-events (failures) are observed before the n-th event (success), and
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can be written10

NBin(n, p) : Pr{X = k} ≡ p(k) =

(
n+ k − 1

k

)
pn(1− p)k k = 0, 1, . . . ,∞ (3.4)

This formulation makes clear that a given sequence of events involves a total of n + k trials, of
which there are n successes, with probability pn, and k are failures, with probability (1 − p)k.
The binomial coefficient

(
n+k−1

k

)
gives the number of ways to choose the k successes from the

remaining n+ k − 1 trials preceding the last success.
The first three central moments of the negative binomial distribution are:

Mean(X) = nq/p = µ

Var(X) = nq/p2

Skew(X) =
2− p
√
nq

,

where q = 1 − p. The variance of X is therefore greater than the mean, and the distribution is
always positively skewed.

A more general form of the negative binomial distribution (the Polya distribution) allows n to
take non-integer values and to be an unknown parameter. In this case, the combinatorial coefficient,(
n+k−1

k

)
in Eqn. (3.4), is calculated using the gamma function, Γ(•), a generalization of the factorial

for non-integer values, defined so that Γ(x+ 1) = x! when x is an integer.
Then the probability function Eqn. (3.4) becomes

Pr{X = k} ≡ p(k) =
Γ(n+ k)

Γ(n)Γ(k + 1)
pn(1− p)k k = 0, 1, . . . ,∞ . (3.5)

Greenwood and Yule (1920) developed the negative binomial distribution as a model for acci-
dent proneness or susceptibility of individuals to repeated attacks of disease. They assumed that for
any individual, i, the number of accidents or disease occurrences has a Poisson distribution with pa-
rameter λi. If individuals vary in proneness, so that the λi have a gamma distribution, the resulting
distribution is the negative binomial.

In this form, the negative binomial distribution is frequently used as an alternative to the Poisson
distribution when the assumptions of the Poisson (constant probability and independence) are not
satisfied, or when the variance of the distribution is greater than the mean (overdispersion). This
gives rise to an alternative parameterization in terms of the mean (µ) of the distribution and its
relation to the variance. From the relation of the mean and variance to the parameters n, p given
above,

Mean(X) = µ =
n(1− p)

p
=⇒ p =

n

n+ µ
, (3.6)

Var(X) =
n(1− p)

p2
=⇒ Var(X) = µ+

µ2

n
. (3.7)

This formulation allows the variance of the distribution to exceed the mean, and in these terms, the
“size” parameter n is called the dispersion parameter.11 Increasing this parameter corresponds to
less heterogeneity, variance closer to the mean, and therefore greater applicability of the Poisson
distribution.

10There are a variety of other parameterizations of the negative binomial distribution, but all of these can be converted to
the form shown here, which is relatively standard, and consistent with R. They differ in whether the parameter n relates to
the number of successes or the total number of trials, and whether the stopping criterion is defined in terms of failures or
successes. See: http://en.wikipedia.org/wiki/Negative_binomial_distribution for details on these
variations.

11Other terms are “shape parameter,” with reference to the mixing distribution of Poissons with varying λ, “heterogeneity
parameter,” or “aggregation parameter.”

http://en.wikipedia.org/wiki/Negative_binomial_distribution
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3.2.3.1 Calculation and visualization

In R, the density (pmf), distribution (CDF), quantile, and random number functions for the negative
binomial distribution are a bit special, in that the parameterization can be specified using either
(n, p) or (n, µ) forms, where µ = n(1 − p)/p. In our notation, probabilities can be calculated
using dnbinom() using the call dbinom(k, n, p) or the call dbinom(k, n, mu=), as
illustrated below:

> k <- 2
> n <- 2 : 4
> p <- 0.2
> dnbinom(k, n, p)

[1] 0.07680 0.03072 0.01024

> (mu <- n * (1 - p) / p)

[1] 8 12 16

> dnbinom(k, n, mu = mu)

[1] 0.07680 0.03072 0.01024

Thus, for the distribution with k = 2 failures and n = 2:4 successes with probability p =
0.2, the values n = 2:4 correspond to means µ = 8, 12, 16 as shown above.

As before, we can calculate these probabilities for a range of the combinations of arguments
using expand.grid(). In the example below, we allow three values for each of n and p and
calculate all probabilities for all values of k from 0 to 20. The result, nbin_df, is like a 3-way,
21× 3× 3 array of prob values, but in data frame format.

> XN <- expand.grid(k = 0 : 20, n = c(2, 4, 6), p = c(0.2, 0.3, 0.4))
> nbin_df <- data.frame(XN, prob = dnbinom(XN$k, XN$n, XN$p))
> nbin_df$n <- factor(nbin_df$n)
> nbin_df$p <- factor(nbin_df$p)
> str(nbin_df)

'data.frame': 189 obs. of 4 variables:
$ k : int 0 1 2 3 4 5 6 7 8 9 ...
$ n : Factor w/ 3 levels "2","4","6": 1 1 1 1 1 1 1 1 1 1 ...
$ p : Factor w/ 3 levels "0.2","0.3","0.4": 1 1 1 1 1 1 1 1 1 1 ...
$ prob: num 0.04 0.064 0.0768 0.0819 0.0819 ...

With 9 combinations of the parameters, it is most convenient to plot these in separate panels, in
a 3 × 3 display, as in Figure 3.13. The formula prob ~ k | n + p in the call to xyplot()
constructs plots of prob vs. k conditioned on the combinations of n and p.

> xyplot(prob ~ k | n + p, data = nbin_df,
+ xlab = list("Number of failures (k)", cex = 1.25),
+ ylab = list("Probability", cex = 1.25),
+ type = c("h", "p"), pch = 16, lwd = 2,
+ strip = strip.custom(strip.names = TRUE)
+ )

It can be readily seen that the mean increases from left to right with n, and increases from top to
bottom with decreasing p. For these distributions, we can also calculate the theory-implied means,
µ, across the entire distributions, k = 0, 1, . . .∞, as shown below.
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Figure 3.13: Negative binomial distributions for n = 2, 4, 6 and p = 0.2, 0.3, 0.4, using
xyplot().

> n <- c(2, 4, 6)
> p <- c(0.2, 0.3, 0.4)
> NP <- outer(n, p, function(n, p) n * (1 - p) / p)
> dimnames(NP) <- list(n = n, p = p)
> NP

p
n 0.2 0.3 0.4
2 8 4.6667 3
4 16 9.3333 6
6 24 14.0000 9

3.2.4 The geometric distribution
The special case of the negative binomial distribution when n = 1 is a geometric distribution. We
observe a series of independent trials and count the number of non-events (failures) preceding the
first successful event. The probability that there will be k failures before the first success is given
by

Geom(p) : Pr{X = k} ≡ p(k) = p(1− p)k k = 0, 1, . . . . (3.8)

For this distribution the central moments are:

Mean(X) = 1/p
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Var(X) = (1− p)/p2

Skew(X) = (2− p)/
√

1− p

Note that estimation of the parameter p for the geometric distribution can be handled as the
special case of the negative binomial by fixing n = 1, so no special software is needed. Going the
other way, ifX1, X2, . . . Xn are independent geometrically distributed as Geom(p), then their sum,
Y =

∑n
j Xj is distributed as NBin(p, n).

In R, the standard set of functions for the geometric distribution are available as dgeom(x,
prob), pgeom(q, prob), qgeom(p, prob), and rgeom(n, prob), where prob repre-
sents p here. Visualization of the geometric distribution follows the pattern used earlier for other
discrete distributions.

3.2.5 The logarithmic series distribution
The logarithmic series distribution is a long-tailed distribution introduced by Fisher et al. (1943) in
connection with data on the abundance of individuals classified by species of the type shown for the
distribution of butterfly species in Table 3.5.

The probability distribution function with parameter p is given by

LogSer(p) : Pr{X = k} ≡ p(k) =
pk

−(k log(1− p))
= αpk/k k = 1, 2, . . . ,∞ , (3.9)

where α = −1/ log(1− p) and 0 < p < 1.
For this distribution, the first two central moments are:

Mean(X) = α

(
p

1− p

)
,

Var(X) = −p p+ log(1− p)
(1− p)2 log2(1− p)

.

Fisher derived the logarithmic series distribution by assuming that for a given species the number
of individuals trapped has a Poisson distribution with parameter λ = γt, where γ is a parameter of
the species (susceptibility to entrapment) and t is a parameter of the trap. If different species vary so
that the parameter γ has a gamma distribution, then the number of representatives of each species
trapped will have a negative binomial distribution. However, the observed distribution is necessarily
truncated on the left, because one cannot observe the number of species never caught (where k = 0).
The logarithmic series distribution thus arises as a limiting form of the zero-truncated negative
binomial.

Maximum likelihood estimation of the parameter p in the log-series distribution is described
by Böhning (1983), extending a simpler Newton’s method approximation by Birch (1963a). The
vcdExtra package contains the set of R functions, dlogseries(x, prob), plogseries(q,
prob), qlogseries(p, prob), and rlogseries(n, prob), where prob represents p
here.

3.2.6 Power series family
We mentioned earlier that the Poisson distribution was unique among all discrete (one-parameter)
distributions, in that it is the only one whose mean and variance are equal (Kosambi, 1949). The
relation between mean and variance of discrete distributions also provides the basis for integrating
them into a general family. All of the discrete distributions described in this section are in fact
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Table 3.10: The Power Series family of discrete distributions
Discrete Probability Series Series Series
Distributiion function, p(k) parameter, θ function, f(θ) coefficient, a(k)
Poisson e−λλk/k! θ = λ eθ 1/k!

Binomial
(
n
k

)
pk(1− p)n−k θ = p/(1− p) (1 + θ)n

(
n
k

)
Negative binomial

(
n+k−1

k

)
pn(1− p)k θ = (1− p) (1− θ)−k

(
n+k−1

k

)
Geometric p(1− p)k θ = (1− p) (1− θ)−k 1

Logarithmic series θk/[−k log(1− θ)] θ = θ − log(1− θ) 1/k

special cases of a family of discrete distributions called the power series distributions by Noack
(1950) and defined by

p(k) = a(k)θk/f(θ) k = 0, 1, . . . ,

with parameter θ > 0, where a(k) is a coefficient function depending only on k and f(θ) =∑
k a(k)θk is called the series function. The definitions of these functions are shown in Table 3.10.

These relations among the discrete distribution provide the basis for graphical techniques for diag-
nosing the form of discrete data described later in this chapter (Section 3.5.4).

3.3 Fitting discrete distributions

In applications to discrete data such as the examples in Section 3.1, interest is often focused on
how closely such data follow a particular distribution, such as the Poisson, binomial, or geometric
distribution. A close fit provides for interpretation in terms of the underlying mechanism for the
distribution; conversely, a bad fit can suggest the possibility for improvement by relaxing one or
more of the assumptions. We examine more detailed and nuanced methods for diagnosing and
testing discrete distributions in Section 3.4 and Section 3.5 below.

Fitting a discrete distribution involves three basic steps:

1. Estimating the parameter(s) of the distribution from the data; for example, p for the binomial,
λ for the Poisson, n and p for the negative binomial. Typically, this is carried out by max-
imum likelihood methods, or a simpler method of moments, which equates sample moments
(mean, variance, skewness) to those of the theoretical distribution, and solves for the parameter
estimates. These methods are illustrated in Section 3.3.1.

2. From this, we can calculate the fitted probabilities, p̂k that apply for the given distribution, or
equivalently, the model expected frequencies, Np̂k, where N is the total sample size.

3. Finally, we can calculate goodness-of-fit tests measuring the departure between the observed
and fitted frequencies.

Often goodness-of-fit is examined with a classical (Pearson) goodness-of-fit (GOF) chi-squared
test,

X2 =
K∑
k=1

(nk −Np̂k)
2

Np̂k
∼ χ2

(K−s−1) , (3.10)

where there are K frequency classes, s parameters have been estimated from the data, and p̂k is the
estimated probability of each basic count, under the null hypothesis that the data follows the chosen
distribution.
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An alternative test statistic is the likelihood-ratio G2 statistic,

G2 =
K∑
k=1

nk log(nk/Np̂k) , (3.11)

when the p̂k are estimated by maximum likelihood, which also has an asymptotic χ2
(K−s−1) distri-

bution. “Asymptotic” means that these are large sample tests, meaning that the test statistic follows
the χ2 distribution increasingly well as N → ∞. A common rule of thumb is that all expected
frequencies should exceed one and that fewer than 20% should be less than 5.

EXAMPLE 3.12: Death by horse kick
We illustrate the basic ideas of goodness-of fit tests with the HorseKicks data, where we

expect a Poisson distribution with parameter λ = mean number of deaths. As shown in Eqn. (3.3),
this is calculated as the frequency (nk) weighted mean of the k values, here, number of deaths.

In R, such one-way frequency distributions should be converted to data frames with numeric
variables. The calculation below uses weighted.mean() with the frequencies as weights, and
finds λ = 0.61 as the mean number of deaths per corps-year.

> # goodness-of-fit test
> tab <- as.data.frame(HorseKicks, stringsAsFactors = FALSE)
> colnames(tab) <- c("nDeaths", "Freq")
> str(tab)

'data.frame': 5 obs. of 2 variables:
$ nDeaths: chr "0" "1" "2" "3" ...
$ Freq : int 109 65 22 3 1

> (lambda <- weighted.mean(as.numeric(tab$nDeaths), w = tab$Freq))

[1] 0.61

From this, we can calculate the probabilities (phat) of k = 0:4 deaths, and hence the ex-
pected (exp) frequencies in a Poisson distribution.

> phat <- dpois(0 : 4, lambda = lambda)
> exp <- sum(tab$Freq) * phat
> chisq <- (tab$Freq - exp)^2 / exp
>
> GOF <- data.frame(tab, phat, exp, chisq)
> GOF

nDeaths Freq phat exp chisq
1 0 109 0.5433509 108.67017 0.0010011
2 1 65 0.3314440 66.28881 0.0250573
3 2 22 0.1010904 20.21809 0.1570484
4 3 3 0.0205551 4.11101 0.3002534
5 4 1 0.0031346 0.62693 0.2220057

Finally, the Pearson χ2 is just the sum of the chisq values and pchisq() is used to calculate
the p-value of this test statistic—the probability of obtaining this χ2 or a more extreme value if our
assumption on the underlying distribution is true.

> sum(chisq) # chi-square value

[1] 0.70537

> pchisq(sum(chisq), df = nrow(tab) - 2, lower.tail = FALSE)

[1] 0.87194
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The result, χ2
3 = 0.70537, shows an extremely good fit of these data to the Poisson distribution,

perhaps exceptionally so.12

4

3.3.1 R tools for discrete distributions
In R, the function fitdistr() in the MASS package is a basic work horse for fitting a variety of
distributions by maximum likelihood and other methods, giving parameter estimates and standard
errors. Among discrete distributions, the binomial, Poisson and geometric distributions have closed-
form maximum likelihood estimates; the negative binomial distribution, parameterized by (n, µ), is
estimated iteratively by direct optimization.

These basic calculations are extended and enhanced for one-way discrete distributions in the vcd
function goodfit(), which computes the fitted values of a discrete distribution (either Poisson,
binomial, or negative binomial) to the count data. If the parameters are not specified they are esti-
mated either by maximum likelihood (ML) or Minimum Chi-squared. print() and summary()
methods for the "goodfit" objects give, respectively, a table of observed and fitted frequencies, and
the Pearson and/or likelihood ratio goodness-of-fit statistics. Plotting methods for visualizing the
discrepancies between observed and fitted frequencies are described and illustrated in Section 3.3.2.

EXAMPLE 3.13: Families in Saxony
This example uses goodfit() to fit the binomial to the distribution of the number of male

children in families of size 12 in Saxony. Note that for the binomial, both n and p are considered as
parameters, and by default n is taken as the maximum count.

> data("Saxony", package = "vcd")
> Sax_fit <- goodfit(Saxony, type = "binomial")
> unlist(Sax_fit$par) # estimated parameters

prob size
0.51922 12.00000

So, we estimate the probability of a male in these families to be p = 0.519, a value that is quite
close to the value found in Arbuthnot’s data (p = 0.517).

It is useful to know that goodfit() returns a list structure of named components that are used
by method functions for class "goodfit" objects. The print.goodfit() method prints the table
of observed and fitted frequencies. summary.goodfit() calculates and prints the likelihood
ratio χ2 GOF test when the ML estimation method is used.

> names(Sax_fit) # components of "goodfit" objects

[1] "observed" "count" "fitted" "type" "method"
[6] "df" "par"

> Sax_fit # print method

Observed and fitted values for binomial distribution
with parameters estimated by `ML'

count observed fitted pearson residual
0 3 0.93284 2.14028

12An exceptionally good fit occurs when the p-value for the test χ2 statistic is so high, as to suggest that something
unreasonable under random sampling might have occurred. The classic example of this is the controversy over Gregor
Mendel’s experiments of cross-breeding garden peas with various observed (phenotype) characteristics, where R. A. Fisher
(1936a) suggested that observed frequencies of combinations like (smooth/wrinkled), (green/yellow) in a second generation
were uncomfortably too close to the 3 : 1 ratio predicted by genetic theory.
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1 24 12.08884 3.42580
2 104 71.80317 3.79963
3 286 258.47513 1.71205
4 670 628.05501 1.67371
5 1033 1085.21070 -1.58490
6 1343 1367.27936 -0.65661
7 1112 1265.63031 -4.31841
8 829 854.24665 -0.86380
9 478 410.01256 3.35761

10 181 132.83570 4.17896
11 45 26.08246 3.70417
12 7 2.34727 3.03687

> summary(Sax_fit) # summary method

Goodness-of-fit test for binomial distribution

X^2 df P(> X^2)
Likelihood Ratio 97.007 11 6.9782e-16

Note that the GOF test gives a highly significant p-value (pratically zero), indicating significant
lack of fit to the binomial distribution.13 Some further analysis of this result is explored in examples
below. 4

EXAMPLE 3.14: Weldon’s dice
Weldon’s dice data, explored in Example 3.3, are also expected to follow a binomial distribution,

here with p = 1
3 . However, as given in the data set WeldonDice, the frequencies for counts 10–12

were grouped as “10+.” In this case, it is necessary to supply the correct value of n = 12 as the
value of the size parameter in the call to goodfit().

> data("WeldonDice", package = "vcd")
> dice_fit <- goodfit(WeldonDice, type = "binomial",
+ par = list(size = 12))
> unlist(dice_fit$par)

prob size
0.33769 12.00000

The probability of a success (a 5 or 6) is estimated as p̂ = 0.3377, not far from the theoretical
value, p = 1/3.

> print(dice_fit, digits = 0)

Observed and fitted values for binomial distribution
with parameters estimated by `ML'

count observed fitted pearson residual
0 185 187 -0
1 1149 1147 0
2 3265 3216 1
3 5475 5465 0
4 6114 6269 -2
5 5194 5114 1
6 3067 3042 0

13A handy rule-of-thumb is to think of the ratio of χ2/df , because, under the null hypothesis of acceptable fit,
E(χ2/df) = 1, so ratios exceeding ≈ 2.5 are troubling. Here, the ratio is 97/11 = 8.8, so the lack of fit is substan-
tial.
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7 1331 1330 0
8 403 424 -1
9 105 96 1

10 18 15 1
11 0 1 -1
12 0 0 -0

> summary(dice_fit)

Goodness-of-fit test for binomial distribution

X^2 df P(> X^2)
Likelihood Ratio 11.506 9 0.2426

Here, we find an acceptable fit for the binomial distribution. 4

EXAMPLE 3.15: Death by horse kick
This example reproduces the calculations done “manually” in Example 3.12 above. We fit the

Poisson distribution to the HorseKicks data by specifying type = "poisson" (actually, that
is the default for goodfit()).

> data("HorseKicks", package = "vcd")
> HK_fit <- goodfit(HorseKicks, type = "poisson")
> HK_fit$par

$lambda
[1] 0.61

> HK_fit

Observed and fitted values for poisson distribution
with parameters estimated by `ML'

count observed fitted pearson residual
0 109 108.67017 0.03164
1 65 66.28881 -0.15830
2 22 20.21809 0.39629
3 3 4.11101 -0.54795
4 1 0.62693 0.34142

The summary method uses the LR test by default, so the X^2 value reported below differs
slightly from the Pearson χ2 value shown earlier.

> summary(HK_fit)

Goodness-of-fit test for poisson distribution

X^2 df P(> X^2)
Likelihood Ratio 0.86822 3 0.83309

4

EXAMPLE 3.16: Federalist Papers
In Example 3.5 we examined the distribution of the marker word “may” in blocks of text in

the Federalist Papers written by James Madison. A naive hypothesis is that these occurrences
might follow a Poisson distribution, that is, as independent occurrences with constant probability
across the 262 blocks of text. Using the same methods as above, we fit these data to the Poisson
distribution:
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> data("Federalist", package = "vcd")
> Fed_fit0 <- goodfit(Federalist, type = "poisson")
> unlist(Fed_fit0$par)

lambda
0.65649

> Fed_fit0

Observed and fitted values for poisson distribution
with parameters estimated by `ML'

count observed fitted pearson residual
0 156 135.891389 1.724988
1 63 89.211141 -2.775086
2 29 29.283046 -0.052306
3 8 6.407995 0.628903
4 4 1.051694 2.874934
5 1 0.138085 2.319483
6 1 0.015109 7.620613

The GOF test below shows a substantial lack of fit, rejecting the assumptions of the Poisson
model.

> summary(Fed_fit0)

Goodness-of-fit test for poisson distribution

X^2 df P(> X^2)
Likelihood Ratio 25.243 5 0.00012505

Mosteller and Wallace (1963) determined that the negative binomial distribution provided a
better fit to these data than the Poisson. We can verify this as follows:

> Fed_fit1 <- goodfit(Federalist, type = "nbinomial")
> unlist(Fed_fit1$par)

size prob
1.18633 0.64376

> summary(Fed_fit1)

Goodness-of-fit test for nbinomial distribution

X^2 df P(> X^2)
Likelihood Ratio 1.964 4 0.74238

Recall that the Poisson distribution assumes that the probability of a word like may appearing
in a block of text is small and constant, and that for the Poisson, E(x) = V(x) = λ. One interpre-
tation of the better fit of the negative binomial is that the use of a given word occurs with Poisson
frequencies, but Madison varied its rate λi from one block of text to another according to a gamma
distribution, allowing the variance to be greater than the mean. 4

3.3.2 Plots of observed and fitted frequencies
In the examples of the last section, we saw cases where the GOF tests showed close agreement
between the observed and model-fitted frequencies, and cases where they diverged significantly, to
cause rejection of a hypothesis that the data followed the specified distribution.
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Figure 3.14: Plots for the Federalist Papers data, fitting the Poisson model. Each panel shows the
observed frequencies as bars and the fitted frequencies as a smooth curve. Left: raw frequencies;
right: plotted on a square-root scale to emphasize smaller frequencies.

What is missing from such numerical summaries is any appreciation of the details of this statis-
tical comparison. Plots of the observed and fitted frequencies can help to show both the shape of the
theoretical distribution we have fitted and the pattern of any deviations between our data and theory.

In this section we illustrate some simple plotting tools for these purposes, using the
plot.goodfit() method for "goodfit" objects. 14 The left panel of Figure 3.14 shows the
fit of the Poisson distribution to the Federalist Papers data, using one common form of plot that is
sometimes used for this purpose. In this plot, observed frequencies are shown by bars and fitted
frequencies are shown by points, connected by a smooth (spline) curve.

Such a plot, however, is dominated by the largest frequencies, making it hard to assess the
deviations among the smaller frequencies. To make the smaller frequencies more visible, Tukey
(1977) suggests plotting the frequencies on a square-root scale, which he calls a rootogram. This
plot is shown in the right panel of Figure 3.14.

> plot(Fed_fit0, scale = "raw", type = "standing")
> plot(Fed_fit0, type = "standing")

Additional improvements over the standard plot on the scale of raw frequencies are shown in
Figure 3.15, both of which use the square root scale. The left panel moves the rootogram bars so
their tops are at the expected frequencies (giving a hanging rootogram). This has the advantage
that we can more easily judge the pattern of departures against the horizontal reference line at 0,
than against the curve.

> plot(Fed_fit0, type = "hanging", shade = TRUE)
> plot(Fed_fit0, type = "deviation", shade = TRUE)

A final variation is to emphasize the differences between the observed and fitted frequencies
by drawing the bars to show the gaps between the 0 line and the (observed−expected) difference
(Figure 3.15, right).

14Quantile–quantile (QQ) plots are a common alternative for the goal of comparing observed and expected values under
some distribution. These plots are useful for unstructured samples, but less so when we also want to see the shape of a
distribution, as is the case here.



94 3. Fitting and Graphing Discrete Distributions

−2.8
−2.0

 0.0

 2.0

 4.0

 8.0

Pearson
residuals:

p−value =
<2e−16

0

2

4

6

8

10

0 1 2 3 4 5 6

Number of Occurrences

sq
rt(

Fr
eq

ue
nc

y)
�

�

�

�

�

� �

−2.8
−2.0

 0.0

 2.0

 4.0

 8.0

Pearson
residuals:

p−value =
<2e−16

0

2

4

6

8

10

0 1 2 3 4 5 6

Number of Occurrences

sq
rt(

Fr
eq

ue
nc

y)

�

�

�

�

�

� �

Figure 3.15: Plots for the Federalist Papers data, fitting the Poisson model. Left: hanging
rootogram; Right: deviation rootogram. Color reflects the sign and magnitude of the contributions
to lack of fit.

All of these plots are actually produced by the rootogram() function in vcd, the plot()
method for "goodfit" objects. The default is type = "hanging", and there are many options to
control the plot details. For example, the plots in Figure 3.15 use shade=TRUE to color the bars
according to the contribution to the Pearson chi-square.15

The plots in Figure 3.14 and Figure 3.15 used the ill-fitting Poisson model on purpose to high-
light how these plots show the departure between the observed and fitted frequencies. Figure 3.16
compares this with the negative binomial model, Fed_fit1, which we saw has a much better, and
acceptable fit.

> plot(Fed_fit0, main = "Poisson", shade = TRUE, legend = FALSE)
> plot(Fed_fit1, main = "Negative binomial", shade = TRUE, legend = FALSE)

Comparing the two plots in Figure 3.16, we can see that the Poisson model overestimates the
frequency of counts k = 1 and underestimates the larger counts for k = 4–6 occurrences. The
surprising feature here is that the greatest contribution to lack of fit for the Poisson model is the
frequency for k = 6. The deviations for the negative binomial are small and unsystematic.

Finally, Figure 3.17 shows hanging rootograms for two atrociously bad models for the data on
butterfly species in Malaya considered in Example 3.7. As we will see in Section 3.4, this long-
tailed distribution is better approximated by the logarithmic series distribution, but this distribution
is presently not handled by goodfit().

> data("Butterfly", package = "vcd")
> But_fit1 <- goodfit(Butterfly, type = "poisson")
> But_fit2 <- goodfit(Butterfly, type = "nbinomial")
> plot(But_fit1, main = "Poisson", shade = TRUE, legend = FALSE)
> plot(But_fit2, main = "Negative binomial", shade = TRUE, legend = FALSE)

15The bipolar color scheme uses blue for positive standard Pearson residuals, (nk −Np̂k)/
√
Np̂k , and red for negative

residuals, with shading intensity proportional to the categorized absolute values shown in the legend.
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3.4 Diagnosing discrete distributions: Ord plots

Ideally, the general form chosen for a discrete distribution should be dictated by substantive knowl-
edge of a plausible mechanism for generating the data. When such knowledge is lacking, however,
we may not know which distribution is most appropriate for some particular set of data. In these
cases, the question is often turned around, so that we seek a distribution that fits well, and then try
to understand the mechanism in terms of aspects of the underlying probability theory (independent
trials, rare events, waiting-time to an occurrence, and so forth).

Although it is possible to fit each of several possibilities, the summary goodness-of-fit statistics
can easily be influenced by one or two disparate cells, or additional (ignored or unknown) factors.
One simple alternative is a plot suggested by Ord (1967), which may be used to diagnose the form
of the discrete distribution.

Ord showed that a linear relationship of the form:

k p(k)

p(k − 1)
≡ k nk
nk−1

= a+ b k (3.12)

holds for each of the Poisson, binomial, negative binomial, and logarithmic series distributions,
and these distributions are distinguished by the signs of the intercept, a, and slope, b, as shown in
Table 3.11.

Table 3.11: Diagnostic slope and intercept for four discrete distributions. The ratios knk/nk−1
plotted against k should appear as a straight line, whose slope and intercept determine the particular
distribution.

Slope Intercept Distribution Parameter
(b) (a) (parameter) estimate
0 + Poisson (λ) λ = a
− + Binomial (n, p) p = b/(b− 1)
+ + Negative binomial (n, p) p = 1− b
+ − Log. series (θ) θ = b

θ = −a
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Figure 3.16: Hanging rootograms for the Federalist Papers data, comparing the Poisson and nega-
tive binomial models.
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Figure 3.17: Hanging rootograms for the Butterfly data, comparing the Poisson and negative bino-
mial models. The lack of fit for both is readily apparent.

The slope, b, in Eqn. (3.12) is zero for the Poisson, negative for the binomial, and positive
for the negative binomial and logarithmic series distributions; the latter two are distinguished by
their intercepts. In practical applications of this idea, the details are important: how to fit the line,
and how to determine if the pattern of signs are sufficient to reasonably provide a diagnosis of the
distribution type.

One difficulty in applying this technique is that the number of points (distinct values of k) in
the Ord plot is often small, and the sampling variances of k nk/nk−1 can vary enormously. A little
reflection indicates that points where nk is small should be given less weight in determining the
slope of the line (and hence determining the form of the distribution). In applications it has been
found that using a weighted least squares fit of k nk/nk−1 on k, using weights of wk =

√
nk − 1

produces reasonably good automatic diagnosis of the form of a probability distribution. Moreover,
to judge whether a coefficient is positive or negative, a small tolerance is used; if none of the
distributions can be classified, no parameters are estimated. Caution is advised in accepting the
conclusion, because it is based on these simple heuristics.

In the vcd package this method is implemented in the Ord_plot() function. The essential
ideas are illustrated using the Butterfly data below, which produces Figure 3.18. Note that the
function returns (invisibly) the values of the intercept and slope in the weighted least squares (WLS)
regression.

> ord <- Ord_plot(Butterfly,
+ main = "Butterfly species collected in Malaya",
+ gp = gpar(cex = 1), pch = 16)
> ord

Intercept Slope
-0.70896 1.06082

In this plot, the black line shows the usual ordinary least squares (OLS) regression fit of fre-
quency, nk, on number of occurrences, k; the red line shows the weighted least squares fit, using
weights of

√
nk − 1. In this case, the two lines are fairly close together, in regards to their intercepts

and slopes. The positive slope and negative intercept diagnoses this as a log-series distribution.
In other cases, the number of distinct points (values of k) is small, and the sampling variances

of the ratios k nk/nk−1 can vary enormously. The following examples illustrate some other distri-
butions and some of the details of the heuristics.
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Figure 3.18: Ord plot for the Butterfly data. The slope and intercept in the plot correctly diagnoses
the log-series distribution.

3.4.0.1 Ord plot examples

EXAMPLE 3.17: Death by horse kick
The results below show the calculations for the horse kicks data, with the frequency ratio

k nk/nk−1 labeled y.

> data("HorseKicks", package = "vcd")
> nk <- as.vector(HorseKicks)
> k <- as.numeric(names(HorseKicks))
> nk1 <- c(NA, nk[-length(nk)])
> y <- k * nk / nk1
> weight <- sqrt(pmax(nk, 1) - 1)
> (ord_df <- data.frame(k, nk, nk1, y, weight))

k nk nk1 y weight
1 0 109 NA NA 10.3923
2 1 65 109 0.59633 8.0000
3 2 22 65 0.67692 4.5826
4 3 3 22 0.40909 1.4142
5 4 1 3 1.33333 0.0000

> coef(lm(y ~ k, weights = weight, data = ord_df))

(Intercept) k
0.656016 -0.034141

The weighted least squares line, with weights wk, has a slope (-0.03) close to zero, indicating
the Poisson distribution.16 The estimate λ = a = .656 compares favorably with the maximum
likelihood estimate (MLE), λ = 0.610 and the value from the Poissonness plot, shown in the
following section. The call to Ord_plot() below produces Figure 3.19.

> Ord_plot(HorseKicks,
+ main = "Death by horse kicks", gp = gpar(cex = 1), pch = 16)

16The heuristic adopted in Ord_plot() uses a tolerance of 0.1 to decide if a coefficient is negative, zero, or positive.
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Figure 3.19: Ord plot for the HorseKicks data. The plot correctly diagnoses the Poisson distribu-
tion.

4

EXAMPLE 3.18: Federalist Papers
Figure 3.20 (left) shows the Ord plot for the Federalist data. The slope is positive, so

either the negative binomial or log series are possible, according to Table 3.11. The intercept is
essentially zero, which is ambiguous. However, the logarithmic series requires b ≈ −a, so the
negative binomial is a better choice. Mosteller and Wallace (1963, 1984) did in fact find a reasonably
good fit to this distribution. Note that there is one apparent outlier, at k = 6, whose effect on the
OLS line is to increase the slope and decrease the intercept. 4

> Ord_plot(Federalist, main = "Instances of 'may' in Federalist Papers",
+ gp = gpar(cex = 1), pch = 16)

EXAMPLE 3.19: Women in queues
Jinkinson and Slater (1981) and Hoaglin and Tukey (1985) give the frequency distribution of the

number of females observed in 100 queues of length 10 in a London Underground station, recorded
in the data set WomenQueue in vcd.

> data("WomenQueue", package = "vcd")
> WomenQueue

nWomen
0 1 2 3 4 5 6 7 8 9 10
1 3 4 23 25 19 18 5 1 1 0

If it is assumed that people line up independently, and that men and women are equally likely
to be found in a queue (not necessarily reasonable assumptions), then the number of women out of
10 would have a (symmetric) binomial distribution with parameters n = 10 and p = 1

2 . However,
there is no real reason to expect that males and females are equally likely to be found in queues in
the London underground, so we may be interested in estimating p from the data and determining if
a binomial distribution fits.
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> Ord_plot(WomenQueue, main = "Women in queues of length 10",
+ gp = gpar(cex = 1), pch = 16)

Figure 3.20 (right) shows the Ord plot for these data. The negative slope and positive intercept
clearly diagnose this distribution as binomial. The rough estimate of p̂ = b/(1−b) = 0.53 indicates
that women are slightly more prevalent than men in these data for the London underground. 4

3.4.0.2 Limitations of Ord plots

Using a single simple diagnostic plot to determine one of four common discrete distributions is
advantageous, but your enthusiasm should be dampened by several weaknesses:

• The Ord plot lacks resistance, because a single discrepant frequency affects the points nk/nk−1
for both k and k + 1.

• The sampling variance of k nk/nk−1 fluctuates widely (Hoaglin and Tukey, 1985, Jinkinson and
Slater, 1981). The use of weights wk helps, but is purely a heuristic device. The Ord_plot()
function explicitly shows both the OLS line and the WLS line, which provides some indication
of the effect of the points on the estimation of slope and intercept.

3.5 Poissonness plots and generalized distribution plots

The Poissonness plot (Hoaglin, 1980) is a robust plot to sensitively determine how well a one-way
table of frequencies follows a Poisson distribution. It plots a quantity called a against k, designed
so that the result will be points along a straight line when the data follow a Poisson distribution.
When the data deviate from a Poisson, the points will be curved. Hoaglin and Tukey (1985) devel-
oped similar plots for other discrete distributions, including the binomial, negative binomial, and
logarithmic series distributions. We first describe the features and construction of these plots for the
Poisson distribution; then (Section 3.5.4) the extension to other distributions.
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Figure 3.20: Ord plots for the Federalist (left) and WomenQueue (right) data sets.



100 3. Fitting and Graphing Discrete Distributions

3.5.1 Features of the Poissonness plot

The Poissonness plot has the following desirable features:

• Resistance: a single discrepant value of nk affects only the point at value k. (In the Ord plot it
affects each of its neighbors.)

• Comparison standard: An approximate confidence interval can be found for each point, indi-
cating its inherent variability and helping to judge whether each point is discrepant.

• Influence: Extensions of the method result in plots that show the effect of each point on the
estimate of the main parameter of the distribution (λ in the Poisson).

3.5.2 Plot construction

Assume, for some fixed λ, each observed frequency, nk equals the expected frequency, mk = Npk.
Then, setting nk = Npk = Ne−λ λk/k!, and taking logs of both sides gives

log(nk) = log N − λ+ k log λ− log k! .

This can be rearranged to a linear equation in k,

φ (nk) ≡ log

(
k! nk
N

)
= −λ+ (log λ) k . (3.13)

The left side of Eqn. (3.13) is called the count metameter, and denoted φ (nk). Hence, plotting
φ(nk) against k should give a straight line of the form φ(nk) = a+ bk with

• slope = log λ
• intercept = −λ

when the observed frequencies follow a Poisson distribution. If the points in this plot are close
enough to a straight line, then an estimate of λ may be obtained from the slope b of the line, and
λ̂ = eb should be reasonably close in value to the MLE of λ, λ̂ = x̄. In this case, we might as well
use the MLE as our estimate.

3.5.2.1 Leveled plot

If we have a preliminary estimate λ0 of λ, we can use this to give a new plot where the reference line
is horizontal, making comparison of the points with the line easier. In this leveled plot the vertical
coordinate φ(nk) is modified to

φ′(nk) = φ(nk) + λ0 − k log λ0 . (3.14)

When the data follow a Poisson distribution with parameter λ, the modified plot will have

• slope = log λ− log λ0 = log(λ/λ0)
• intercept = λ0 − λ

In the ideal case, where our estimate of λ0 is close to the true λ, the line will be approximately
horizontal at φ(nk)′ = 0. The modified plot is particularly useful in conjunction with the confidence
intervals for individual points described below.
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3.5.2.2 Confidence intervals

The goal of the Poissonness plot is to determine whether the points are “sufficiently linear” to
conclude that the Poisson distribution is adequate for the data. Confidence intervals for the points
can help you decide, and also show the relative precision of the points in these plots.

For example, when one or two points deviate from an otherwise nearly linear relation, it is
helpful to determine whether the discrepancy is consistent with chance variation. As well, we must
recognize that classes with small frequencies nk are less precise than classes with large frequencies.

Hoaglin and Tukey (1985) develop approximate confidence intervals for log(mk) for each point
in the Poissonness plot. These are calculated as

φ (n∗k)± hk (3.15)

where the count metameter function is calculated using a modified frequency n∗k, defined as

n∗k =

 nk − .8nk − .67 n ≥ 2
1/e n = 1
undefined n = 0

and hk is the half-width of the 95% confidence interval,

hk = 1.96

√
1− p̂k

[nk − (.25p̂k + .47)
√
nk]1/2

and p̂k = nk/N . A more modern approach could use a bootstrap estimate.

3.5.3 The distplot() function
Poissonness plots (and versions for other distributions) are produced by the function distplot()
in vcd. As with Ord_plot(), the first argument is either a vector of counts, a one-way table
of frequencies of counts, or a data frame or matrix with frequencies in the first column and the
corresponding counts in the second column. Nearly all of the examples in this chapter use one-way
tables of counts.

The type argument specifies the type of distribution. For type = "poisson", specifying
a value for lambda = λ0 gives the leveled version of the plot.

EXAMPLE 3.20: Death by horse kick
The calculations for the Poissonness plot, including confidence intervals, are shown below for

the HorseKicks data. The call to distplot() produces the plot in the left panel of Figure 3.21.

> data("HorseKicks", package = "vcd")
> dp <- distplot(HorseKicks, type = "poisson",
+ xlab = "Number of deaths", main = "Poissonness plot: HorseKicks data")
> print(dp, digits = 4)

Counts Freq Metameter CI.center CI.width CI.lower CI.upper
1 0 109 -0.607 -0.6131 0.1305 -0.7436 -0.4827
2 1 65 -1.124 -1.1343 0.2069 -1.3412 -0.9274
3 2 22 -1.514 -1.5451 0.4169 -1.9620 -1.1281
4 3 3 -2.408 -2.6607 1.3176 -3.9783 -1.3431
5 4 1 -2.120 -3.1203 2.6887 -5.8089 -0.4316

In this plot, the open circles show the calculated observed values of the count
Metameter = φ (nk). The smaller filled points show the centers of the confidence intervals,
CI.center = φ (n∗k) (Eqn. (3.15)), and the dashed lines show the extent of the confidence inter-
vals.
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Figure 3.21: Poissonness plots for the HorseKick data. Left: standard plot; right: leveled plot.

The fitted least squares line has a slope of -0.431, which would indicate λ = e−0.431 = 0.65.
This compares well with the MLE, λ = x̄ = 0.61.

Using lambda = 0.61 as below gives the leveled version shown in the right panel of Fig-
ure 3.21.

> # leveled version, specifying lambda
> distplot(HorseKicks, type = "poisson", lambda = 0.61,
+ xlab = "Number of deaths", main = "Leveled Poissonness plot")

In both plots the fitted line is within the confidence intervals, indicating the adequacy of the
Poisson model for these data. The widths of the intervals for k > 2 are graphic reminders that these
observations have decreasingly low precision where the counts nk are small.

4

3.5.4 Plots for other distributions

As described in Section 3.2.6, the binomial, Poisson, negative binomial, geometric, and logseries
distributions are all members of the general power series family of discrete distributions. For this
family, Hoaglin and Tukey (1985) developed similar plots of a count metameter against k, which
appear as a straight line when a data distribution follows a given family member.

The distributions which can be analyzed in this way are shown in Table 3.12, with the interpre-
tation given to the slope and intercept in each case.

For example, for the Binomial distribution, a “binomialness” plot is constructed by plotting
log n∗k/N

(
n
k

)
against k. If the points in this plot approximate a straight line, the slope is interpreted

as log(p/(1− p)), so the binomial parameter p may be estimated as p = eb/(1 + eb).
Unlike the Ord plot, a different plot is required for each distribution, because the count metame-

ter, φ(nk), differs from distribution to distribution. Moreover, systematic deviation from a linear
relationship does not indicate which distribution provides a better fit. However, the attention to ro-
bustness, and the availability of confidence intervals and influence diagnostics, make this a highly
useful tool for visualizing discrete distributions.
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Figure 3.22: Diagnostic plots for males in Saxony families. Left: goodfit() plot; right:
distplot() plot. Both plots show heavier tails than in a binomial distribution.

EXAMPLE 3.21: Families in Saxony
Our analysis in Example 3.2 and Example 3.13 of the Saxony data showed that the distribution

of male children had slightly heavier tails than the binomial, meaning the observed distribution is
overdispersed. We can see this in the goodfit() plot shown in Figure 3.22 (left), and even
more clearly in the distribution diagnostic plot produced by distplot() in the right panel of
Figure 3.22. For a binomial distribution, we call this distribution plot a “binomialness plot.”

> plot(goodfit(Saxony, type = "binomial", par = list(size=12)),
+ shade=TRUE, legend=FALSE,
+ xlab = "Number of males")
> distplot(Saxony, type = "binomial", size = 12,
+ xlab = "Number of males")

Table 3.12: Plot parameters for five discrete distributions. In each case the count metameter, φ(n∗k)
is plotted against k, yielding a straight line when the data follow the given distribution.

Distribution
Probability
function, p(k)

Count)
metameter, φ(n∗k)

Theoretical
slope (b)

Theoretical
intercept (a)

Poisson e−λλk/k! log(k!n∗k/N) log(λ) -λ

Binomial
(
n
k

)
pk(1− p)n−k log

(
n∗k/N

(
n
k

))
log
(

p
1−p

)
n log(1− p)

Negative bino-
mial

(
n+k−1

k

)
pn(1− p)k log

(
n∗k/N

(
n+k−1

k

))
log(1− p) n log(p)

Geometric p(1− p)k log (n∗k/N) log(1− p) log(p)

Log series θk/[−k log(1− θ)] log (kn∗k/N) log(θ) − log (− log(1− θ))
Source: adapted from Hoaglin and Tukey (1985), Table 9-15.
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Figure 3.23: Diagnostic plots for the Federalist Papers data. Left: Poissonness plot; right: negative
binomialness plot.

The weight of evidence is thus that, as simple as the binomial might be, it is inadequate to fully
explain the distribution of sex ratios in this large sample of families of 12 children. To understand
this data better, it is necessary to question the assumptions of the binomial (births of males are
independent Bernoulli trials with constant probability p) as a model for this birth distribution and/or
find a more adequate model.17 4

EXAMPLE 3.22: Federalist Papers
In Example 3.16 we carried out GOF tests for the Poisson and negative binomial models with

the Federalist Papers data; Figure 3.16 showed the corresponding rootogram plots. Figure 3.23
compares these two using the diagnostic plots of this section. Again the Poisson shows systematic
departure from the linear relation required in the Poissonness plot, while the negative binomial
model provides an acceptable fit to these data.

> distplot(Federalist, type = "poisson", xlab = "Occurrences of 'may'")
> distplot(Federalist, type = "nbinomial", xlab = "Occurrences of 'may'")

4

3.6 Fitting discrete distributions as generalized linear
models?

In Section 3.2.6, we described how the common discrete distributions are all members of the general
power series family. This provides the basis for the generalized distribution plots described in
Section 3.5.4. Another general family of distributions—the exponential family—includes most of
the common continuous distributions: the normal, gamma, exponential, and others, and is the basis
of the class of generalized linear models (GLMs) fit by glm().

17On these questions, Edwards (1958) reviews numerous other studies of these Geissler’s data, and fits a so-called β-
binomial model proposed by Skellam (1948), where p varies among families according to a β distribution. He concludes
that there is evidence that p varies between families of the same size. One suggested explanation is that family decisions to
have a further child is influenced by the balance of boys and girls among their earlier children.
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Table 3.13: Poisson loglinear representations for some discrete distributions

Distribution Sufficient statistics Offset
Geometric k

Poisson k − log(k!)

Binomial k log
(
n
k

)
Double binomial k, k log(k) + (n− k) log(n− k) log

(
n
k

)

A clever approach by Lindsey and Mersch (1992), Lindsey (1995, Section 6.1) shows how var-
ious discrete (and continuous) distributions can be fit to frequency data using generalized linear
models for log frequency (which are equivalent to Poisson loglinear models). The uniform, geomet-
ric, binomial, and the Poisson distributions may all be fit easily in this way, but the idea extends to
some other distributions, such as the double binomial distribution, that allows a separate parameter
for overdispersion relative to the binomial. A clear advantage is that this method gives estimated
standard errors for the distribution parameters as well as estimated confidence intervals for fitted
probabilities.

The essential idea is that, for frequency data, any distribution in the exponential family may be
represented by a linear model for the logarithm of the cell frequency, with a Poisson distribution for
errors, otherwise known as a “Poisson loglinear regression model.” These have the form

log(Nπk) = offset + β0 + βTS(k) ,

where N is the total frequency, πk is the modeled probability of count k, S(k) is a vector of zero
or more sufficient statistics for the canonical parameters of the exponential family distribution, and
the offset term is a value that does not depend on the parameters.

Table 3.13 shows the sufficient statistics and offsets for several discrete distributions. See Lind-
sey and Mersch (1992) for further details, and definitions for the double-binomial distribution,18

and Lindsey (1995, pp. 130–133) for his analysis of the Saxony data using this distribution. Lind-
sey and Altham (1998) provide an analysis of the complete Geissler data (provided in the data set
Geissler in vcdExtra) using several different models to handle overdispersion.

EXAMPLE 3.23: Families in Saxony
The binomial distribution and the double binomial can both be fit to frequency data as a Poisson

regression via glm() using log
(
n
k

)
as an offset. First, we convert Saxony into a numeric data

frame for use with glm().

> data("Saxony", package = "vcd")
> Males <- as.numeric(names(Saxony))
> Families <- as.vector(Saxony)
> Sax.df <- data.frame(Males, Families)

To calculate the offset for glm() in R, note that choose(12,0:12) returns the binomial
coefficients, and lchoose(12,0:12) returns their logs.

18In R, the double binomial distribution is implemented in the rmutil package, providing the standard complement of
density function (ddoublebinom()), CDF (pdoublebinom()), quantiles (qdoublebinom()), and random genera-
tion (rdoublebinom()). This package is not on CRAN, but is available at http://www.commanster.eu/rcode.
html.

http://www.commanster.eu/rcode.html
http://www.commanster.eu/rcode.html
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> # fit binomial (12, p) as a glm
> Sax.bin <- glm(Families ~ Males, offset = lchoose(12, 0:12),
+ family = poisson, data = Sax.df)
>
> # brief model summaries
> LRstats(Sax.bin)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

Sax.bin 191 192 97 11 7e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> coef(Sax.bin)

(Intercept) Males
-0.069522 0.076898

As we have seen, this model fits badly. The parameter estimate for Males, β1 = 0.0769 is
actually estimating the logit of p, log p/(1−p), so the inverse transformation gives p̂ = exp(β1)

1+exp(β1)
=

0.5192, as we had before.
The double binomial model can be fitted as follows. The term YlogitY calculates k log(k) +

(n− k) log(n− k), the second sufficient statistic for the double binomial (see Table 3.13) fitted via
glm().

> # double binomial, (12, p, psi)
> Sax.df$YlogitY <-
+ Males * log(ifelse(Males == 0, 1, Males)) +
+ (12-Males) * log(ifelse(12-Males == 0, 1, 12-Males))
>
> Sax.dbin <- glm(Families ~ Males + YlogitY, offset = lchoose(12,0:12),
+ family = poisson, data = Sax.df)
> coef(Sax.dbin)

(Intercept) Males YlogitY
-3.096918 0.065977 0.140205

> LRstats(Sax.bin, Sax.dbin)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

Sax.bin 191 192 97.0 11 7e-16 ***
Sax.dbin 109 111 13.1 10 0.22
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the above, we can see that the double binomial model Sax.dbin with one more param-
eter is significantly better than the simple binomial and represents an adequate fit to the data. The
table below displays the fitted values and standardized residuals for both models.

> results <- data.frame(Sax.df,
+ fit.bin = fitted(Sax.bin), res.bin = rstandard(Sax.bin),
+ fit.dbin = fitted(Sax.dbin), res.dbin = rstandard(Sax.dbin))
> print(results, digits = 2)

Males Families YlogitY fit.bin res.bin fit.dbin res.dbin
1 0 3 30 0.93 1.70 3.0 0.026
2 1 24 26 12.09 3.05 23.4 0.136
3 2 104 24 71.80 3.71 104.3 -0.036
4 3 286 23 258.48 1.87 307.8 -1.492
5 4 670 22 628.06 1.94 652.9 0.778
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Figure 3.24: Rootogram for the double binomial model for the Saxony data. This now fits well in
the tails of the distribution.

6 5 1033 22 1085.21 -1.87 1038.5 -0.202
7 6 1343 22 1367.28 -0.75 1264.2 2.635
8 7 1112 22 1265.63 -5.09 1185.0 -2.550
9 8 829 22 854.25 -1.03 850.1 -0.846
10 9 478 23 410.01 3.75 457.2 1.144
11 10 181 24 132.84 4.23 176.8 0.371
12 11 45 26 26.08 3.42 45.2 -0.039
13 12 7 30 2.35 2.45 6.5 0.192

Finally, Figure 3.24 shows the rootogram for the double binomial, which can be compared with
the binomial model shown in Figure 3.22. We can see that the fit is now quite good, particularly in
the tails. The positive coefficient for the term YlogitY gives additional weight in the tails.

> with(results, vcd::rootogram(Families, fit.dbin, Males,
+ xlab = "Number of males"))

4

3.6.1 Covariates, overdispersion, and excess zeros

All of the examples in this chapter are somewhat special, in that in each case the data consist only
of a one-way frequency distribution of a basic count variable. In more general and realistic settings,
there may also be one or more explanatory variables or covariates that influence the frequency
distributions of the counts. For example, in the Saxony data, the number of boys in families
of size 12 was aggregated over the years 1876–1885, and it is possible that any deviation from a
binomial distribution could be due to variation over time or unmeasured predictors (e.g., rural vs.
urban, age of parents).

This is where the generalized linear model approach introduced here (treated in detail in Chap-
ter 11), begins to shine—because it allows such covariates to be taken into account, and then ques-
tions regarding the form of the distribution pertain only to the variation of the frequencies not fitted
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Figure 3.25: Hanging rootograms for publications by PhD candidates, comparing the Poisson and
negative binomial models. The Poisson model clearly does not fit. The the negative binomial is
better, but still has significant lack of fit.

by the model. The next example illustrates what can go wrong when important predictors are omit-
ted from the analysis.

EXAMPLE 3.24: Publications of PhD candidates
Long (1990, 1997) gave data on the number of publications by 915 doctoral candidates in bio-

chemistry in the last three years of their PhD studies, contained in the data set PhdPubs in vcdEx-
tra. The data set also includes information on gender, marital status, number of young children,
prestige of the doctoral department, and number of publications by the student’s mentor. The fre-
quency distribution of number of publications by these students is shown below.

> data("PhdPubs", package = "vcdExtra")
> table(PhdPubs$articles)

0 1 2 3 4 5 6 7 8 9 10 11 12 16 19
275 246 178 84 67 27 17 12 1 2 1 1 2 1 1

The naive approach, ignoring the potential predictors, is just to try fitting various probability
models to this one-way distribution. Rootograms for the simpler Poisson distribution and the nega-
tive binomial that allows for overdispersion are shown in Figure 3.25.

> library(vcd)
> plot(goodfit(PhdPubs$articles), xlab = "Number of Articles",
+ main = "Poisson")
> plot(goodfit(PhdPubs$articles, type = "nbinomial"),
+ xlab = "Number of Articles", main = "Negative binomial")

From these plots it is clear that the Poisson distribution doesn’t fit well at all, because there is
a large excess of zero counts—candidates with no publications, and most of the counts of four or
more publications are larger than the Poisson model predicts. The fit of the negative binomial model
in the right panel of Figure 3.25 looks much better, except that for eight or more publications, there
is a systematic tendency of overfitting for 8–10 and underfittting for the observed counts of 12 or
more. This lack of fit is confirmed by the formal test.
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> summary(goodfit(PhdPubs$articles, type = "nbinomial"))

Goodness-of-fit test for nbinomial distribution

X^2 df P(> X^2)
Likelihood Ratio 31.098 12 0.0019033

The difficulty with this simple analysis is not only that it ignores the possible predictors of
publishing by these PhD candidates, but also, by doing so, it prevents a better, more nuanced ex-
planation of the phenomenon under study. This example is re-visited in Chapter 11, Example 11.1,
where we consider generalized linear models taking potential predictors into account, as well as
extended zero-inflated models allowing special consideration of zero counts. 4

3.7 Chapter summary

• Discrete distributions typically involve basic counts of occurrences of some event occurring
with varying frequency. The ideas and methods for one-way tables described in this chapter are
building blocks for the analysis of more complex data.

• The most commonly used discrete distributions include the binomial, Poisson, negative bino-
mial, geometric, and logarithmic series distributions. Happily, these are all members of a family
called the power series distributions. Methods of fitting an observed data set to any of these dis-
tributions are described, and implemented in the goodfit() function.

• After fitting an observed distribution it is useful to plot the observed and fitted frequencies.
Several ways of making these plots are described, and implemented in the rootogram()
function.

• A heuristic graphical method for identifying which discrete distribution is most appropriate for
a given set of data involves plotting ratios knk/nk−1 against k. These plots are constructed by
the function Ord_plot().

• A more robust plot for a Poisson distribution involves plotting a count metameter, φ(nk) against
k, which gives a straight line (whose slope estimates the Poisson parameter) if the data follow
a Poisson distribution. This plot provides robust confidence intervals for individual points and
provides a means to assess the influence of individual points on the Poisson parameter. These
plots are provided by the function distplot().

• The ideas behind the Poissonness plot can be applied to the other discrete distributions.

3.8 Lab exercises

Exercise 3.1 The Arbuthnot data in HistData (Example 3.1) also contains the variable Ratio,
giving the ratio of male to female births.

(a) Make a plot of Ratio over Year, similar to Figure 3.1. What features stand out? Which plot
do you prefer to display the tendency for more male births?

(b) Plot the total number of christenings, Males + Females or Total (in 000s) over time.
What unusual features do you see?
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Exercise 3.2 Use the graphical methods illustrated in Section 3.2 to plot a collection of geometric
distributions for p = 0.2, 0.4, 0.6, 0.8, over a range of values of k = 0, 1, . . . 10.

(a) With xyplot(), try the different plot formats using points connected with lines, as in Fig-
ure 3.9, or using points and lines down to the origin, as in the panels of Figure 3.10.

(b) Also with xyplot(), produce one version of a multi-line plot in a single panel that you think
shows well how these distributions change with the probability p of success.

(c) Do the same in a multi-panel version, conditional on p.

Exercise 3.3 Use the data set WomenQueue to:

(a) Produce plots analogous to those shown in Section 3.1 (some sort of bar graph of frequencies).
(b) Check for goodness-of-fit to the binomial distribution using the goodfit() methods de-

scribed in Section 3.3.2.
(c) Make a reasonable plot showing departure from the binomial distribution.
(d) Suggest some reasons why the number of women in queues of length 10 might depart from a

binomial distribution, Bin(n = 10, p = 1/2).

Exercise 3.4 Continue Example 3.13 on the distribution of male children in families in Saxony by
fitting a binomial distribution, Bin(n = 12, p = 1

2 ), specifying equal probability for boys and girls.
[Hint: you need to specify both size and prob values for goodfit().]

(a) Carry out the GOF test for this fixed binomial distribution. What is the ratio of χ2/df? What
do you conclude?

(b) Test the additional lack of fit for the model Bin(n = 12, p = 1
2 ) compared to the model

Bin(n = 12, p = p̂) where p̂ is estimated from the data.
(c) Use the plot.gootfit() method to visualize these two models.

Exercise 3.5 For the Federalist data, the examples in Section 3.3.1 and Section 3.3.2 showed
the negative binomial to provide an acceptable fit. Compare this with the simpler special case of
geometric distribution, corresponding to n = 1.

(a) Use goodfit() to fit the geometric distribution. [Hint: use type="nbinomial", but
specify size=1 as a parameter.]

(b) Compare the negative binomial and the geometric models statistically, by a likelihood-ratio
test of the difference between these two models.

(c) Compare the negative binomial and the geometric models visually by hanging rootograms or
other methods.

Exercise 3.6 Mosteller and Wallace (1963, Table 2.4) give the frequencies, nk, of counts k =
0, 1, . . . of other selected marker words in 247 blocks of text known to have been written by Alexan-
der Hamilton. The data below show the occurrences of the word upon, that Hamilton used much
more than did James Madison.

> count <- 0 : 5
> Freq <- c(129, 83, 20, 9, 5, 1)

(a) Read these data into R and construct a one-way table of frequencies of counts or a matrix or
data frame with frequencies in the first column and the corresponding counts in the second
column, suitable for use with goodfit().

(b) Fit and plot the Poisson model for these frequencies.
(c) Fit and plot the negative binomial model for these frequencies.
(d) What do you conclude?
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Exercise 3.7 The data frame Geissler in the vcdExtra package contains the complete data from
Geissler’s (1889) tabulation of family sex composition in Saxony. The table below gives the number
of boys in families of size 11.

boys 0 1 2 3 4 5 6 7 8 9 10 11
Freq 8 72 275 837 1,540 2,161 2,310 1,801 1,077 492 93 24

(a) Read these data into R.
(b) Following Example 3.13, use goodfit() to fit the binomial model and plot the results. Is

there an indication that the binomial does not fit these data?
(c) Diagnose the form of the distribution using the methods described in Section 3.4.
(d) Try fitting the negative binomial distribution, and use distplot() to diagnose whether the

negative binomial is a reasonable fit.

Exercise 3.8 The data frame Bundesliga gives a similar data set to that for UK soccer scores
(UKSoccer) examined in Example 3.9, but over a wide range of years. The following lines calcu-
late a two-way table, BL1995, of home-team and away-team goals for the 306 games in the year
1995.

> data("Bundesliga", package = "vcd")
> BL1995 <- xtabs(~ HomeGoals + AwayGoals, data = Bundesliga,
+ subset = (Year == 1995))
> BL1995

AwayGoals
HomeGoals 0 1 2 3 4 5 6

0 26 16 13 5 0 1 0
1 19 58 20 5 4 0 1
2 27 23 20 5 1 1 1
3 14 11 10 4 2 0 0
4 3 5 3 0 0 0 0
5 4 1 0 1 0 0 0
6 1 0 0 1 0 0 0

(a) As in Example 3.9, find the one-way distributions of HomeGoals, AwayGoals, and
TotalGoals = HomeGoals + AwayGoals.

(b) Use goodfit() to fit and plot the Poisson distribution to each of these. Does the Poisson
seem to provide a reasonable fit?

(c) Use distplot() to assess fit of the Poisson distribution.
(d) What circumstances of scoring goals in soccer might cause these distributions to deviate from

Poisson distributions?

Exercise 3.9 ? Repeat the exercise above, this time using the data for all years in which there was
the standard number (306) of games, that is for Year>1965, tabulated as shown below.

> BL <- xtabs(~ HomeGoals + AwayGoals, data = Bundesliga,
+ subset = (Year > 1965))

Exercise 3.10 Using the data CyclingDeaths introduced in Example 3.6 and the one-way fre-
quency table CyclingDeaths.tab = table(CyclingDeaths$deaths),

(a) Make a sensible plot of the number of deaths over time. For extra credit, add a smoothed curve
(e.g., using lines(lowess(...))).

(b) Test the goodness of fit of the table CyclingDeaths.tab to a Poisson distribution statisti-
cally using goodfit().
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(c) Continue this analysis using a rootogram() and distplot().
(d) Write a one-paragraph summary of the results of these analyses and your conclusions.

Exercise 3.11 ? The one-way table, Depends, in vcdExtra and shown below gives the frequency
distribution of the number of dependencies declared in 4, 983 R packages maintained on the CRAN
distribution network on January 17, 2014. That is, there were 986 packages that had no dependen-
cies, 1, 347 packages that depended on one other package, . . . up to 2 packages that depended on 14
other packages.

Depends 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Pkgs 986 1,347 993 685 375 298 155 65 32 19 9 4 9 4 2

(a) Make a bar plot of this distribution.
(b) Use Ord_plot() to see if this method can diagnose the form of the distribution.
(c) Try to fit a reasonable distribution to describe dependencies among R packages.

Exercise 3.12 ? How many years does it take to get into the baseball Hall of Fame? The Lah-
man (Friendly, 2014b) package provides a complete record of historical baseball statistics from
1871 to the present. One table, HallOfFame, records the history of players nominated to the Base-
ball Hall of Fame, and those eventually inducted. The table below, calculated in help(HallOfFame,
package="Lahman"), records the distribution of the number of years taken (from first nomina-
tion) for the 109 players in the Hall of Fame to be inducted (1936–present). Note that years==0
does not, and cannot, occur in this table, so the distribution is restricted to positive counts. Such
distributions are called zero-truncated distributions. Such distributions are like the ordinary ones,
but with the probability of zero being zero. Thus the other probabilities are scaled up (i.e., divided
by 1− Pr(Y = 0)) so they sum to 1.

years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
inducted 46 10 8 7 8 4 2 4 6 3 3 1 4 1 2

(a) For the Poisson distribution, show that the zero-truncated probability function can be ex-
pressed in the form

Pr{X = k | k > 0}) =
1

1− e−λ
× e−λ λk

k!
k = 1, 2, . . .

(b) Show that the mean is λ/(1− exp(−λ)).
(c) Enter these data into R as a one-way table, and use goodfit() to fit the standard Poisson

distribution, as if you hadn’t encountered the problem of zero truncation.
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The analysis of two-way frequency tables concerns the association between two vari-
ables. A variety of specialized graphical displays help us to visualize the pattern of as-
sociation, using area of some region to represent the frequency in a cell. Some of these
methods are focused on visualizing an odds ratio (for 2 × 2 tables), or the general pattern
of association, or the agreement between row and column categories in square tables.

4.1 Introduction

Tables are like cobwebs, like the sieve of Danaides; beautifully reticulated, orderly to
look upon, but which will hold no conclusion. Tables are abstractions, and the object a
most concrete one, so difficult to read the essence of.

From Chartism by Thomas Carlyle (1840), Chapter II, Statistics

Most methods of statistical analysis are concerned with understanding relationships or depen-
dence among variables. With categorical variables, these relationships are often studied from data
that has been summarized by a contingency table in table form or frequency form, giving the fre-
quencies of observations cross-classified by two or more such variables. As Thomas Carlyle said, it
is often difficult to appreciate the message conveyed in numerical tables.

This chapter is concerned with simple graphical methods for understanding the association be-
tween two categorical variables. Some examples are also presented that involve a third, stratifying
variable, where we wish to determine if the relationship between two primary variables is the same
or different for all levels of the stratifying variable. More general methods for fitting models and
displaying associations for three-way and larger tables are described in Chapter 5.

115
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In Section 4.2, we describe briefly some numerical and statistical methods for testing whether
an association exists between two variables, and measures for quantifying the strength of this asso-
ciation. In Section 4.3 we extend these ideas to situations where the relation between two variables
is of primary interest, but there are one or more background variables to be controlled.

The main emphasis, however, is on graphical methods that help to describe the pattern of an
association between variables. Section 4.4 presents the fourfold display, designed to portray the
odds ratio in 2 × 2 tables or a set of k such tables. Sieve diagrams (Section 4.5) and association
plots (Section 4.6) are more general methods for depicting the pattern of associations in any two-
way table. When the row and column variables represent the classifications of different raters,
specialized measures and visual displays for inter-rater agreement (Section 4.7) are particularly
useful. Another specialized display, a trilinear plot or ternary plot, described in Section 4.8, is
designed for three-column frequency tables or compositional data. In order to make clear some of
the distinctions that occur in contingency table analysis, we begin with several examples.

EXAMPLE 4.1: Berkeley admissions
Table 4.1 shows aggregate data on applicants to graduate school at Berkeley for the six largest

departments in 1973 classified by admission and gender (Bickel et al., 1975). See UCBAdmissions
(in package datasets ) for the complete data set. For such data we might wish to study whether
there is an association between admission and gender. Are male (or female) applicants more likely
to be admitted? The presence of an association might be considered as evidence of sex bias in
admission practices.

Table 4.1 is an example of the simplest kind of contingency table, a 2× 2 classification of indi-
viduals according to two dichotomous (binary) variables. For such a table, the question of whether
there is an association between admission and gender is equivalent to asking if the proportions of
males and females who are admitted to graduate school are different, or whether the difference in
proportions admitted is not zero. 4

Table 4.1: Admissions to Berkeley graduate programs

Gender Admitted Rejected Total % Admit
Males 1198 1493 2691 44.52
Females 557 1278 1835 30.35
Total 1755 2771 4526 38.78

Although the methods for quantifying association in larger tables can be used for 2 × 2 tables,
there are specialized measures (described in Section 4.2) and graphical methods for these simpler
tables.

As we mentioned in Section 1.2.4 it is often useful to make a distinction between response, or
outcome variables, on the one hand, and possible explanatory or predictor variables on the other.
In Table 4.1, it is natural to consider admission as the outcome, and gender as the explanatory
variable. In other tables, no variable may be clearly identified as the outcome, or there may be
several response variables, giving a multivariate problem.

EXAMPLE 4.2: Hair color and eye color
Table 4.2 shows data collected by Snee (1974) on the relation between hair color and eye color

among 592 students in a statistics course (a two-way margin of HairEyeColor).
Neither hair color nor eye color is considered a response in relation to the other; our interest

concerns whether an association exists between them. Hair color and eye color have both been
classified into four categories. Although the categories used are among the most common, they are
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Table 4.2: Hair-color eye-color data

Eye Hair Color
Color Black Brown Red Blond Total
Brown 68 119 26 7 220
Blue 20 84 17 94 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64
Total 108 286 71 127 592

not the only categories possible.1 A common, albeit deficient, representation of such a table is a
grouped barchart, as shown in the left of Figure 4.1:

> hec <- margin.table(HairEyeColor, 2:1)
> barplot(hec, beside = TRUE, legend = TRUE)
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Figure 4.1: Two basic displays for the Hair-color Eye-color data. Left: grouped barchart; right: tile
plot.

For each hair color, a group of bars represent the corresponding eye colors, the heights being pro-
portional to the absolute frequencies. Bar graphs do not extend well to more than one dimension
since

• the graphical representation does not match the tabular data structure, complicating comparisons
with the raw data;

• it is harder to compare bars accross groups than within groups;

• by construction, the grouping suggests a conditional or causal relationship of the variables (here:
“what is the eye color given the hair color?,” “how does eye color influence hair color?”), even
though such an interpretation may be inappropriate (as in this example);

1If students had been asked to write down their hair and eye colors, it is likely that many more than four categories of
each would appear in a sample of nearly 600.
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Table 4.3: Mental impairment and parents’ SES
Mental impairment

SES Well Mild Moderate Impaired
1 64 94 58 46
2 57 94 54 40
3 57 105 65 60
4 72 141 77 94
5 36 97 54 78
6 21 71 54 71

• labeling may become increasingly complex.

A somewhat better approach is a tile plot (using tile() in vcd), as shown next to the bar plot
in Figure 4.1:

> tile(hec)

The table frequencies are represented by the area of rectangles arranged in the same tabular form as
the raw data, facilitating comparisons between tiles accross both variables (by rows or by columns),
by maintaining a one-to-one relationship to the underlying table2.

Everyday observation suggests that there probably is an association between hair color and eye
color, and we will describe tests and measures of associations for larger tables in Section 4.2.3. If,
as is suspected, hair color and eye color are associated, we would like to understand how they are
associated. The graphical methods described later in this chapter and in Chapter 5 help reveal the
pattern of associations present. 4

EXAMPLE 4.3: Mental impairment and parents’ SES
Srole et al. (1978, p. 289) gave the data in Table 4.3 on the mental health status of a sample of

1660 young New York residents in midtown Manhattan classified by their parents’ socioeconomic
status (SES); see Mental in the vcdExtra package. These data have also been analyzed by many
authors, including Agresti (2013, Section 10.5.3), Goodman (1979), and Haberman (1979, p. 375).

There are six categories of SES (from 1 = “High” to 6 = “Low”), and mental health is classified
in the four categories “well,” “mild symptom formation,” “moderate symptom formation,” and “im-
paired.” It may be useful here to consider SES as explanatory and ask whether and how it predicts
mental health status as a response, that is, whether there is an association, and if so, investigate its
nature.

> data("Mental", package = "vcdExtra")
> mental <- xtabs(Freq ~ ses + mental, data = Mental)
> spineplot(mental)

Figure 4.2 shows a spineplot of this data—basically a stacked barchart of the row percentages
of mental impairment for each SES category, the width of each bar being proportional to the overall
SES percentages.3 From this graph, it is apparant that the “well” mental state decreases with social-
economic status, while the “impaired” state increases. This pattern is more specific than overall
association (as suspected for the hair-color eye-color data), and indeed, more powerful and focused
tests are available when we treat these variables as ordinal, as we will see in Section 4.2.4. 4

2This kind of display is more generally known as a fluctuation diagram (Hofmann, 2000), flexibly implemented by
function fluctile() in the package extracat (Pilhoefer, 2014).

3Thus, in the more technical terms introduced in 4.2.1, this spineplot shows the conditional distribution of impairment,
given the categories of SES.
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Figure 4.2: Spineplot of the Mental data.

EXAMPLE 4.4: Arthritis treatment
The data in Table 4.4 compares an active treatment for rheumatoid arthritis to a placebo (Koch

and Edwards, 1988), used in examples in Chapter 2 (Example 2.2). The outcome reflects whether
individuals showed no improvement, some improvement, or marked improvement. Here, the out-
come variable is an ordinal one, and it is probably important to determine if the relation between
treatment and outcome is the same for males and females. The data set is given in case form in
Arthritis (in package vcd).

This is, of course, a three-way table, with factors Treatment, Sex, and Improvement.
If the relation between treatment and outcome is the same for both genders, an analysis of the
Treatment by Improvement table (collapsed over sex) could be carried out. Otherwise we could
perform separate analyses for men and women, or treat the combinations of treatment and sex as
four levels of a “population” variable, giving a 4 × 3 two-way table. These simplified approaches
each ignore certain information available in an analysis of the full three-way table. 4

4.2 Tests of association for two-way tables

4.2.1 Notation and terminology

To establish notation, let N = {nij} be the observed frequency table of variables A and B with
r rows and c columns, as shown in Table 4.5. In what follows, a subscript is replaced by a “+”
when summed over the corresponding variable, so ni+ =

∑
j nij gives the total frequency in row

i, n+j =
∑
i nij gives the total frequency in column j, and n++ =

∑
i

∑
j nij is the grand total;

for convenience, n++ is also symbolized by n.
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Table 4.4: Arthritis treatment data

Improvement
Treatment Sex None Some Marked Total

Active Female 6 5 16 27
Male 7 2 5 14

Placebo Female 19 7 6 32
Male 10 0 1 11

Total 42 14 28 84

Table 4.5: The R× C contingency table

Row Column category
Category 1 2 · · · C Total
1 n11 n12 · · · n1C n1+
2 n21 n22 · · · n2C n2+
...

...
... · · ·

...
...

R nR1 nR2 · · · nRC nR+

Total n+1 n+2 · · · n+C n++

When each observation is randomly sampled from some population and classified on two cat-
egorical variables, A and B, we refer to the joint distribution of these variables, and let πij =
Pr(A = i, B = j) denote the population probability that an observation is classified in row i,
column j (or cell (ij)) in the table. Corresponding to these population joint probabilities, the cell
proportions, pij = nij/n, give the sample joint distribution.

The row totals ni+ and column totals n+j are called marginal frequencies for variables A
and B, respectively. These describe the distribution of each variable ignoring the other. For the
population probabilities, the marginal distributions are defined analogously as the row and column
totals of the joint probabilities, πi+ =

∑
j πij , and π+j =

∑
i πij . The sample marginal proportions

are, correspondingly, pi+ =
∑
j pij = ni+/n, and p+j =

∑
i pij = n+j/n.

When one variable (the column variable, B, for example) is a response variable, and the other
(A) is an explanatory variable, it is most often useful to examine the distribution of the response B
for each level of A separately. These define the conditional distributions of B, given the level of
A, and are defined for the population as πj | i = πij/πi+.

These definitions are illustrated for the Berkeley data (Table 4.1) below, using the function
CrossTable().

> Berkeley <- margin.table(UCBAdmissions, 2:1)
> library(gmodels)
> CrossTable(Berkeley, prop.chisq = FALSE, prop.c = FALSE,
+ format = "SPSS")

Cell Contents
|-------------------------|
| Count |
| Row Percent |
| Total Percent |
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|-------------------------|

Total Observations in Table: 4526

| Admit
Gender | Admitted | Rejected | Row Total |

-------------|-----------|-----------|-----------|
Male | 1198 | 1493 | 2691 |

| 44.519% | 55.481% | 59.456% |
| 26.469% | 32.987% | |

-------------|-----------|-----------|-----------|
Female | 557 | 1278 | 1835 |

| 30.354% | 69.646% | 40.544% |
| 12.307% | 28.237% | |

-------------|-----------|-----------|-----------|
Column Total | 1755 | 2771 | 4526 |
-------------|-----------|-----------|-----------|

The output shows the joint frequencies, nij , and joint sample percentages, 100 × pij , in the
first row within each table cell. The second row in each cell (“Row percent”) gives the conditional
percentage of admission or rejection, 100 × pj | i for males and females separately. The row and
column labelled “Total” give the marginal frequencies, ni+ and n+j , and marginal percentages, pi+
and p+j .

4.2.2 2 by 2 tables: Odds and odds ratios
The 2 by 2 contingency table of applicants to Berkeley graduate programs in Table 4.1 may be
regarded as an example of a cross-sectional study. The total of n = 4, 526 applicants in 1973 has
been classified by both gender and admission status. Here, we would probably consider the total n to
be fixed, and the cell frequencies nij , i = 1, 2; j = 1, 2 would then represent a single multinomial
sample for the cross-classification by two binary variables, with probabilities cell pij , i = 1, 2; j =
1, 2 such that

p11 + p12 + p21 + p22 = 1 .

The basic null hypothesis of interest for a multinomial sample is that of independence. Are admis-
sion and gender independent of each other?

Alternatively, if we consider admission the response variable, and gender an explanatory vari-
able, we would treat the numbers of male and female applicants as fixed and consider the cell
frequencies to represent two independent binomial samples for a binary response. In this case, the
null hypothesis is described as that of homogeneity of the response proportions across the levels of
the explanatory variable.

Measures of association are used to quantify the strength of association between variables.
Among the many measures of association for contingency tables, the odds ratio is particularly
useful for 2 × 2 tables, and is a fundamental parameter in several graphical displays and models
described later. Other measures of strength of association for 2 × 2 tables are described in Stokes
et al. (2000, Chapter 2) and Agresti (1996, Section 2.2).

For a binary response, where the probability of a “success” is π, the odds of a success is defined
as

odds =
π

1− π
.

Hence, odds = 1 corresponds to π = 0.5, or success and failure equally likely. When success is
more likely than failure π > 0.5, and the odds > 1; for instance, when π = 0.75, odds = .75/.25 =
3, so a success is three times as likely as a failure. When failure is more likely, π < 0.5, and the
odds < 1; for instance, when π = 0.25, odds = .25/.75 = 1

3 .
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The odds of success thus vary multiplicatively around 1. Taking logarithms gives an equivalent
measure that varies additively around 0, called the log odds or logit:

logit(π) ≡ log(odds) = log

(
π

1− π

)
. (4.1)

The logit is symmetric about π = 0.5, in that logit(π) = − logit(1 − π). The following lines
calculate the odds and log odds for a range of probabilities. As you will see in Chapter 7, the logit
transformation of a probability is fundamental in logistic regression.

> p <- c(0.05, .1, .25, .50, .75, .9, .95)
> odds <- p / (1 - p)
> logodds <- log(odds)
> data.frame(p, odds, logodds)

p odds logodds
1 0.05 0.052632 -2.9444
2 0.10 0.111111 -2.1972
3 0.25 0.333333 -1.0986
4 0.50 1.000000 0.0000
5 0.75 3.000000 1.0986
6 0.90 9.000000 2.1972
7 0.95 19.000000 2.9444

A binary response for two groups gives a 2 × 2 table, with Group as the row variable, say. Let
π1 and π2 be the success probabilities for Group 1 and Group 2. The odds ratio, θ, is just the ratio
of the odds for the two groups:

odds ratio ≡ θ =
odds1
odds2

=
π1/(1− π1)

π2/(1− π2)
.

Like the odds itself, the odds ratio is always non-negative, between 0 and∞. When θ = 1, the
distributions of success and failure are the same for both groups (so π1 = π2); there is no association
between row and column variables, or the response is independent of group. When θ > 1, Group 1
has a greater success probability; when θ < 1, Group 2 has a greater success probability.

Similarly, the odds ratio may be transformed to a log scale, to give a measure that is symmetric
about 0. The log odds ratio, symbolized by ψ, is just the difference between the logits for Groups 1
and 2:

log odds ratio ≡ ψ = log(θ) = log

[
π1/(1− π1)

π2/(1− π2)

]
= logit(π1)− logit(π2) .

Independence corresponds to ψ = 0, and reversing the rows or columns of the table merely changes
the sign of ψ.

For sample data, the sample odds ratio is the ratio of the sample odds for the two groups:

θ̂ =
p1/(1− p1)

p2/(1− p2)
=
n11/n12
n21/n22

=
n11n22
n12n21

. (4.2)

The sample estimate θ̂ in Eqn. (4.2) is the maximum likelihood estimator of the true θ. The
sampling distribution of θ̂ is asymptotically normal as n → ∞, but may be highly skewed in small
to moderate samples.

Consequently, inference for the odds ratio is more conveniently carried out in terms of the
log odds ratio, whose sampling distribution is more closely normal, with mean ψ = log(θ), and
asymptotic standard error (ASE)

ASE log(θ) ≡ ŝ(ψ̂) =

√
1

n11
+

1

n12
+

1

n21
+

1

n22
=

√∑
i,j

n−1ij . (4.3)
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A large-sample 100(1− α)% confidence interval for log(θ) may therefore be calculated as

log(θ)± z1−α/2 ASE log(θ) = ψ̂ ± z1−α/2 ŝ(ψ̂)

where z1−α/2 is the cumulative normal quantile with 1−α/2 in the lower tail. Confidence intervals
for θ itself are obtained by exponentiating the end points of the interval for ψ = log(θ),4

exp
(
ψ̂ ± z1−α/2ŝ(ψ̂)

)
.

EXAMPLE 4.5: Berkeley admissions
As an illustratation, we apply these formulae to the UCB Admissions data, using the loddsratio()

function in vcd, which by default calculates log-odds:

> data("UCBAdmissions")
> UCB <- margin.table(UCBAdmissions, 1:2)
> (LOR <- loddsratio(UCB))

log odds ratios for Admit and Gender

[1] 0.61035

> (OR <- loddsratio(UCB, log = FALSE))

odds ratios for Admit and Gender

[1] 1.8411

The function returns an object for which the summary() method computes the ASE and carries
out the significance test (for the log odds):

> summary(LOR)

z test of coefficients:

Estimate Std. Error z value
Admitted:Rejected/Male:Female 0.6104 0.0639 9.55

Pr(>|z|)
Admitted:Rejected/Male:Female <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Clearly, the hypothesis of independence has to be rejected, suggesting the presence of gender bias.
confint() computes confidence intervals for (log) odds ratios:

> confint(OR)

2.5 % 97.5 %
Admitted:Rejected/Male:Female 1.6244 2.0867

> confint(LOR)

2.5 % 97.5 %
Admitted:Rejected/Male:Female 0.48512 0.73558

4Note that θ̂ is 0 or∞ if any nij = 0. Haldane (1955) and Gart and Zweiful (1967) showed that improved estimators of θ
and ψ = log(θ) are obtained by replacing each nij by [nij+ 1

2
] in Eqn. (4.2) and Eqn. (4.3). This adjustment is preferred in

small samples, and required if any zero cells occur. In large samples, the effect of adding 0.5 to each cell becomes negligible.
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Finally, we note that an exact test (based on the hypergeometric distribution) is provided by
fisher.test() (see the help page for the details):

> fisher.test(UCB)

Fisher's Exact Test for Count Data

data: UCB
p-value <2e-16
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.6214 2.0912
sample estimates:
odds ratio

1.8409

In general, exact tests are to be prefered over asymptotic tests like the one described above. Note,
however, that the results are very similar in this example. 4

4.2.3 Larger tables: Overall analysis
For two-way tables, overall tests of association can be carried out using assocstats(). If the
data set has more than two factors (as in the Arthritis data), the other factors will be ignored
(and collapsed) if not included when the table is constructed. This simplified analysis may be
misleading if the excluded factors interact with the factors used in the analysis.

EXAMPLE 4.6: Arthritis treatment
Since the main interest is in the relation between Treatment and Improved, an overall

analysis (that ignores Sex) can be carried out by creating a two-way table with xtabs() as shown
below.

> data("Arthritis", package = "vcd")
> Art <- xtabs(~ Treatment + Improved, data = Arthritis)
> Art

Improved
Treatment None Some Marked
Placebo 29 7 7
Treated 13 7 21

> round(100 * prop.table(Art, margin = 1), 2)

Improved
Treatment None Some Marked
Placebo 67.44 16.28 16.28
Treated 31.71 17.07 51.22

The row proportions show a clear difference in the outcome for the two groups: For those given
the placebo, 67% reported no improvement; in the treated group, 51% reported marked improve-
ment. χ2 tests and measures of association are provided by assocstats() as shown below:

> assocstats(Art)

X^2 df P(> X^2)
Likelihood Ratio 13.530 2 0.0011536
Pearson 13.055 2 0.0014626
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Phi-Coefficient : NA
Contingency Coeff.: 0.367
Cramer's V : 0.394

4

The measures of association are normalized variants of the χ2 statistic. Caution is needed for
interpretation since the maximum values depend on the table dimensions.

4.2.4 Tests for ordinal variables
For r × c tables, more sensitive tests than the test for general association (independence) are avail-
able if either or both of the row and column variables are ordinal. Generalized Cochran–Mantel–
Haenszel tests (Landis et al., 1978), which take the ordinal nature of a variable into account, are
provided by the CMHtest() in vcdExtra. These tests are based on assigning numerical scores to
the table categories; the default (table) scores treat the levels as equally spaced. They generally have
higher power when the pattern of association is determined by the order of an ordinal variable.

EXAMPLE 4.7: Mental impairment and parents’ SES
We illustrate these tests using the data on mental impairment and SES introduced in Exam-

ple 4.3, where both variables can be considered ordinal.

> data("Mental", package = "vcdExtra")
> mental <- xtabs(Freq ~ ses + mental, data = Mental)
> assocstats(mental) # standard chisq tests

X^2 df P(> X^2)
Likelihood Ratio 47.418 15 3.1554e-05
Pearson 45.985 15 5.3458e-05

Phi-Coefficient : NA
Contingency Coeff.: 0.164
Cramer's V : 0.096

> CMHtest(mental) # CMH tests

Cochran-Mantel-Haenszel Statistics for ses by mental

AltHypothesis Chisq Df Prob
cor Nonzero correlation 37.2 1 1.09e-09
rmeans Row mean scores differ 40.3 5 1.30e-07
cmeans Col mean scores differ 40.7 3 7.70e-09
general General association 46.0 15 5.40e-05

In this data set, all four tests show a highly significant association. However, the cor test
for nonzero correlation uses only one degree of freedom, whereas the test of general association
requires 15 df. 4

The four tests differ in the types of departure from independence they are sensitive to:

General Association When the row and column variables are both nominal (unordered), the only
alternative hypothesis of interest is that there is some association between the row and column
variables. The CMH test statistic is similar to the (Pearson) Chi-Square and Likelihood Ratio
Chi-Square in the result from assocstats(); all have (r − 1)(c− 1) df.

Row Mean Scores Differ If the column variable is ordinal, assigning scores to the column variable
produces a mean for each row. The association between row and column variables can be
expressed as a test of whether these means differ over the rows of the table, with r − 1 df. This
is analogous to the Kruskal-Wallis non-parametric test (ANOVA based on rank scores).
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Column Mean Scores Differ Same as the above, assigning scores to the row variable.

Nonzero Correlation (Linear association) When both row and column variables are ordinal, we
could assign scores to both variables and compute the correlation (r), giving Spearman’s rank
correlation coefficient. The CMH χ2 is equal to (N − 1)r2, where N is the total sample size.
The test is most sensitive to a pattern where the row mean score changes linearly over the rows.

4.2.5 Sample CMH profiles

Two contrived examples may make the differences among these tests more apparent. Visualiza-
tions of the patterns of association reinforces the aspects to which the tests are most sensitive, and
introduces the sieve diagram described more fully in Section 4.5.

4.2.5.1 General association

The table below exhibits a general association between variables A and B, but no difference in row
means or linear association. The row means for category j are calculated by assigning integer scores,
bi = i, to the column categories, and using the corresponding frequencies of row j as weights. The
column means are obtained analogously. Figure 4.3 (left) shows the pattern of association in this
table graphically, as a sieve diagram (described in Section 4.5).

b1 b2 b3 b4 b5 Total Mean
a1 0 15 25 15 0 55 3.0
a2 5 20 5 20 5 55 3.0
a3 20 5 5 5 20 55 3.0

Total 25 40 35 40 25 165 3.0
Mean 2.8 1.6 1.4 1.6 2.8 2.1

This is reflected in the CMHtest() output shown below (cmhdemo1 contains the data shown
above).

> CMHtest(cmhdemo1)

Cochran-Mantel-Haenszel Statistics

AltHypothesis Chisq Df Prob
cor Nonzero correlation 0.0 1 1.00e+00
rmeans Row mean scores differ 0.0 2 1.00e+00
cmeans Col mean scores differ 72.2 4 7.78e-15
general General association 91.8 8 2.01e-16

The chi-square values for non-zero correlation and different row mean scores are exactly zero
because the row means are all equal. Only the general association test shows that A and B are
associated.

4.2.5.2 Linear association

The table below contains a weak, non-significant general association, but significant row mean
differences and linear associations. The unstructured test of general association would therefore
lead to the conclusion that no association exists, while the tests taking ordinal factors into account
would conclude otherwise. Note that the largest frequencies shift towards lower levels of B as the
level of variable A increases. See Figure 4.3 (right) for a visual representation of this pattern.
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General association
B

A
a3

a2
a1

b1 b2 b3 b4 b5

Linear association
B

A
a4

a3
a2

a1

b1 b2 b3 b4 b5

Figure 4.3: Sieve diagrams for two patterns of association: Left: general association; right: linear
association.

b1 b2 b3 b4 b5 Total Mean
a1 2 5 8 8 8 31 3.48
a2 2 8 8 8 5 31 3.19
a3 5 8 8 8 2 31 2.81
a4 8 8 8 5 2 31 2.52

Total 17 29 32 29 17 124 3.00
Mean 3.1 2.7 2.5 2.3 1.9 2.5

Note that the χ2-values for the row-means and non-zero correlation tests from CMHtest() are
very similar, but the correlation test is more highly significant since it is based on just one degree of
freedom. In the following example, cmhdemo2 corresponds to the table above:

> CMHtest(cmhdemo2)

Cochran-Mantel-Haenszel Statistics

AltHypothesis Chisq Df Prob
cor Nonzero correlation 10.6 1 0.00111
rmeans Row mean scores differ 10.7 3 0.01361
cmeans Col mean scores differ 11.4 4 0.02241
general General association 13.4 12 0.34064

The difference in sensitivity and power among these tests for categorical data is analogous to
the difference between general ANOVA tests and tests for linear trend (contrasts) in experimental
designs with quantitative factors: The more specific test has greater power, but is sensitive to a
narrower range of departures from the null hypothesis. The more focused tests for ordinal factors are
a better bet when we believe that the association depends on the ordered nature of the factor levels.

4.3 Stratified analysis

An overall analysis ignores other variables (like sex), by collapsing over them. In the Arthritis
data, it is possible that the treatment is effective only for one gender, or even that the treatment has
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opposite effects for men and women. If so, pooling over the ignored variable(s) can be seriously
misleading.

4.3.1 Computing strata-wise statistics

A stratified analysis controls for the effects of one or more background variables. This is similar
to the use of a blocking variable in an ANOVA design. Tests for association can be obtained by
applying a function (assocstats(), CMHtest()) over the levels of the stratifying variables.

EXAMPLE 4.8: Arthritis treatment
The statements below request a stratified analysis of the arthritis treatment data with CMH tests,

controlling for gender. Essentially, the analysis is carried out separately for males and females.
The table Art2 is constructed as a three-way table, with Sex as the last dimension.

> Art2 <- xtabs(~ Treatment + Improved + Sex, data = Arthritis)
> Art2

, , Sex = Female

Improved
Treatment None Some Marked
Placebo 19 7 6
Treated 6 5 16

, , Sex = Male

Improved
Treatment None Some Marked
Placebo 10 0 1
Treated 7 2 5

Both assocstats() and CMHtest() are designed for stratified tables, and use all dimen-
sions after the first two as strata.

> assocstats(Art2)

$`Sex:Female`
X^2 df P(> X^2)

Likelihood Ratio 11.731 2 0.0028362
Pearson 11.296 2 0.0035242

Phi-Coefficient : NA
Contingency Coeff.: 0.401
Cramer's V : 0.438

$`Sex:Male`
X^2 df P(> X^2)

Likelihood Ratio 5.8549 2 0.053532
Pearson 4.9067 2 0.086003

Phi-Coefficient : NA
Contingency Coeff.: 0.405
Cramer's V : 0.443

Note that even though the strength of association (Cramer’s V) is similar in the two groups, the
χ2 tests show significance for females, but not for males. This is true even using the more powerful
CMH tests below, treating Treatment as ordinal. The reason is that there were more than twice
as many females as males in this sample.
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> CMHtest(Art2)

$`Sex:Female`
Cochran-Mantel-Haenszel Statistics for Treatment by Improved
in stratum Sex:Female

AltHypothesis Chisq Df Prob
cor Nonzero correlation 10.9 1 0.000944
rmeans Row mean scores differ 10.9 1 0.000944
cmeans Col mean scores differ 11.1 2 0.003878
general General association 11.1 2 0.003878

$`Sex:Male`
Cochran-Mantel-Haenszel Statistics for Treatment by Improved
in stratum Sex:Male

AltHypothesis Chisq Df Prob
cor Nonzero correlation 3.71 1 0.0540
rmeans Row mean scores differ 3.71 1 0.0540
cmeans Col mean scores differ 4.71 2 0.0949
general General association 4.71 2 0.0949

> apply(Art2, 3, sum)

Female Male
59 25

4

4.3.2 Assessing homogeneity of association
In a stratified analysis it is often crucial to know if the association between the primary table
variables is the same over all strata. For 2 × 2 × k tables this question reduces to whether the
odds ratio is the same in all k strata. The vcd package implements Woolf’s test (Woolf, 1995) in
woolf_test() for this purpose.

For larger n-way tables, this question is equivalent to testing whether the association between
the primary variables, A and B, say, is the same for all levels of the stratifying variables, C, D, . . ..

EXAMPLE 4.9: Berkeley admissions
Here we illustrate the use of Woolf’s test for the UCBAdmissions data. The test is significant,

indicating that the odds ratios cannot be considered equal across departments. We will see why
when we visualize the data by department in the next section.

> woolf_test(UCBAdmissions)

Woolf-test on Homogeneity of Odds Ratios (no 3-Way
assoc.)

data: UCBAdmissions
X-squared = 17.9, df = 5, p-value = 0.0031

4

EXAMPLE 4.10: Arthritis treatment
For the arthritis data, homogeneity means the association between treatment and outcome

(improve) is the same for both men and women. Again, we are using woolf_test() to test if
this assumption holds.
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> woolf_test(Art2)

Woolf-test on Homogeneity of Odds Ratios (no 3-Way
assoc.)

data: Art2
X-squared = 0.318, df = 1, p-value = 0.57

Even though we found in the CMH analysis above that the association between Treatment
and Improvedwas stronger for females than males, the analysis using woolf_test() is clearly
non-significant, so we cannot reject homogeneity of association. 4

Remark

As will be discussed later (Section 5.4) in the case of a 3-way table, the hypothesis of homogeneity
of association among three variables A, B and C can be stated as the loglinear model of no three-way
association, [AB][AC][BC]. This notation (described in Section 5.4.1 and Section 9.2) lists only the
high-order association terms in a linear model for log frequency.

This hypothesis can be stated as the loglinear model,

[SexTreatment] [SexImproved] [TreatmentImproved] . (4.4)

Such tests can be carried out most conveniently using loglm() in the MASS package. The
model formula uses the standard R notation ()^2 to specify all terms of order 2.

> library(MASS)
> loglm(~ (Treatment + Improved + Sex)^2, data = Art2)

Call:
loglm(formula = ~(Treatment + Improved + Sex)^2, data = Art2)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 1.7037 2 0.42663
Pearson 1.1336 2 0.56735

Consistent with the Woolf test, the interaction terms are not significant.

4.4 Fourfold display for 2 x 2 tables

The fourfold display is a special case of a radial diagram (or “polar area chart”) designed for the
display of 2×2 (or 2×2×k) tables (Fienberg, 1975, Friendly, 1994a,c). In this display the frequency
nij in each cell of a fourfold table is shown by a quarter circle, whose radius is proportional to√nij ,
so the area is proportional to the cell count. The fourfold display is similar to a pie chart in using
segments of a circle to show frequencies. It differs from a pie chart in that it keeps the angles of the
segments constant and varies the radius, whereas the pie chart varies the angles and keeps the radius
constant.

The main purpose of this display is to depict the sample odds ratio, θ̂ = (n11/n12)÷(n21/n22).
An association between the variables (θ 6= 1) is shown by the tendency of diagonally opposite cells
in one direction to differ in size from those in the opposite direction, and the display uses color
or shading to show this direction. Confidence rings for the observed θ allow a visual test of the
hypothesis of independence, H0 : θ = 1. They have the property that (in a standardized display) the
rings for adjacent quadrants overlap iff the observed counts are consistent with the null hypothesis.
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EXAMPLE 4.11: Berkeley admissions
Figure 4.4 (left) shows the basic, unstandardized fourfold display for the Berkeley admissions

data (Table 4.1). Here, the area of each quadrant is proportional to the cell frequency, shown nu-
merically in each corner. The odds ratio is proportional to the product of the areas shaded dark,
divided by the product of the areas shaded light. The sample odds ratio, Odds(Admit|Male) /
Odds(Admit|Female) is 1.84 (see Example 4.9) indicating that males were nearly twice as likely
to be admitted.

> fourfold(Berkeley, std = "ind.max") # unstandardized
> fourfold(Berkeley, margin = 1) # equating gender
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Figure 4.4: Fourfold displays for the Berkeley admission data. Left: unstandardized; right: equat-
ing the proportions of males and females.

However, it is difficult to make these visual comparisons because there are more men than
women, and because the proportions admitted and rejected are unequal. In the unstandardized
display the confidence bands have no interpretation as a test of H0 : θ = 1.

The data in a 2× 2 table can be standardized to make these visual comparisons easier. Table 4.6
shows the Berkeley data with the addition of row percentages (which equate for the number of men
and women applicants) indicating the proportion of each gender accepted and rejected. We see
that 44.52% of males were admitted, while only 30.35% of females were admitted. Moreover, the
row percentages have the same odds ratio as the raw data: 44.52 × 69.65/30.35 × 55.48 = 1.84.
Figure 4.4 (right) shows the fourfold display where the area of each quarter circle is proportional to
these row percentages.

Table 4.6: Admissions to Berkeley graduate programs, frequencies and row percentages.

Frequencies Row Percents
Admitted Rejected Admitted Rejected

Males 1198 1493 44.52 55.48
Females 557 1278 30.35 69.65
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With this standardization, the confidence rings have the property that the confidence rings for
each upper quadrant will overlap with those for the quadrant below it if the odds ratio does not
differ from 1.0. (Details of the calculation of confidence rings are described in the next section.) No
similar statement can be made about the corresponding left and right quadrants, however, because
the overall rate of admission has not been standardized.

As a final step, we can standardize the data so that both table margins are equal, while preserving
the odds ratio. Each quarter circle is then drawn to have an area proportional to this standardized
cell frequency. This makes it easier to see the association between admission and sex without being
influenced by the overall admission rate or the differential tendency of males and females to apply.
With this standardization, the four quadrants will align (overlap) horizontally and vertically when
the odds ratio is 1, regardless of the marginal frequencies. The fully standardized display, which is
usually the most useful form, is shown in Figure 4.5.

> fourfold(Berkeley) # standardize both margins
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Figure 4.5: Fourfold display for Berkeley admission data with margins for gender and admission
equated. The area of each quadrant shows the standardized frequency in each cell.

4

These displays also use color (blue) and diagonal tick marks to show the direction of positive
association. The visual interpretation (also conveyed by area) is that males are more likely to be
accepted, females more likely to be rejected.

The quadrants in Figure 4.5 do not align and the 95% confidence rings around each quadrant do
not overlap, indicating that the odds ratio differs significantly from 1—putative evidence of gender
bias. The very narrow width of the confidence rings gives a visual indication of the precision of the
data—if we stopped here, we might feel quite confident of this conclusion.
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4.4.1 Confidence rings for odds ratio

Confidence rings for the fourfold display are computed from a confidence interval for θ, whose
endpoints can each be mapped into a 2× 2 table. Each such table is then drawn in the same way as
the data.

The interval for θ is most easily found by considering the distribution of ψ̂ = log θ̂, whose
standard error may be estimated by Eqn. (4.3). Then an approximate 1 − α confidence interval for
ψ is given by

ψ̂ ± ŝ(ψ̂) z1−α/2 = {ψ̂l, ψ̂u} ,

as described in Section 4.2.2. The corresponding limits for the odds ratio θ are {exp(ψ̂l), exp(ψ̂u)}.
For the data shown in Figure 4.5, ψ̂ = log θ̂ = .6104, and ŝ(ψ̂) = 0.0639, so the 95%, lim-
its for θ are {1.624, 2.087}, as shown by the calculations below. The same result is returned by
confint() for a "loddsratio" object.

> summary(loddsratio(Berkeley))

z test of coefficients:

Estimate Std. Error z value
Male:Female/Admitted:Rejected 0.6104 0.0639 9.55

Pr(>|z|)
Male:Female/Admitted:Rejected <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> exp(.6103 + c(-1, 1) * qnorm(.975) * 0.06398)

[1] 1.6240 2.0869

> confint(loddsratio(Berkeley, log = FALSE))

2.5 % 97.5 %
Male:Female/Admitted:Rejected 1.6244 2.0867

Now consider how to find a 2 × 2 table whose frequencies correspond to the odds ratios at the
limits of the confidence interval. A table standardized to equal row and column margins can be
represented by the 2× 2 matrix with entries[

p (1− p)
(1− p) p

]
,

whose odds ratio is θ = p2/(1 − p)2. Solving for p gives p =
√
θ/(1 +

√
θ). The corresponding

frequencies can then be found by adjusting the standardized table to have the same row and column
margins as the data. The results of these computations, which generate the confidence rings in
Figure 4.5, are shown in Table 4.7.

4.4.2 Stratified analysis for 2× 2× k tables

In a 2 × 2 × k table, the last dimension often corresponds to “strata” or populations, and it is
typically of interest to see if the association between the first two variables is homogeneous across
strata. For such tables, simply make one fourfold panel for each stratum. The standardization of
marginal frequencies is designed to allow easy visual comparison of the pattern of association when
the marginal frequencies vary across two or more populations.
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Table 4.7: Odds ratios and equivalent tables for 95% confidence rings for the Berkeley data.

Odds Standardized Equivalent
Ratio Table Frequencies

Lower 1.624 0.560 0.440 1,167.1 587.9
limit 0.440 0.560 1,523.9 1,247.1

Data 1.841 0.576 0.424 1,198.0 557.0
0.424 0.576 1,493.0 1,278.0

Upper 2.087 0.591 0.409 1,228.4 526.6
limit 0.409 0.591 1,462.6 1,308.4

4.4.2.1 Stratified displays

The admissions data shown in Figure 4.4 and Figure 4.5 were actually obtained from six departments—
the six largest at Berkeley (Bickel et al., 1975). To determine the source of the apparent sex bias in
favor of males, we make a new plot, Figure 4.6, stratified by department.

> # fourfold display
> UCB <- aperm(UCBAdmissions, c(2, 1, 3))
> fourfold(UCB, mfrow = c(2, 3))
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Figure 4.6: Fourfold displays for Berkeley admissions data, stratified by department. The more
intense shading for Dept. A indicates a significant association.

Surprisingly, Figure 4.6 shows that, for five of the six departments, the odds of admission is
approximately the same for both men and women applicants. Department A appears to differs
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from the others, with women approximately 2.86 (= (313/19)/(512/89)) times as likely to gain
admission. This appearance is confirmed by the confidence rings, which in Figure 4.6 are joint5

95% intervals for θc, c = 1, . . . , k.
This result, which contradicts the display for the aggregate data in Figure 4.4, is a nice example

of Simpson’s paradox,6 and illustrates clearly why an overall analysis of a three- (or higher-) way
table can be misleading.

The resolution of this contradiction can be found in the large differences in admission rates
among departments. Men and women apply to different departments differentially, and in these
data women happen to apply in larger numbers to departments that have a low acceptance rate. The
aggregate results are misleading because they falsely assume men and women are equally likely to
apply in each field.7

4.4.2.2 Visualization principles for complex data

An important principle in the display of large, complex data sets is controlled comparison—we
want to make comparisons against a clear standard, with other things held constant. The fourfold
display differs from a pie chart in that it holds the angles of the segments constant and varies the
radius. An important consequence is that we can quite easily compare a series of fourfold displays
for different strata, since corresponding cells of the table are always in the same position. As a
result, an array of fourfold displays serve the goals of comparison and detection better than an array
of pie charts.

Moreover, it allows the observed frequencies to be standardized by equating either the row or
column totals, while preserving the design goal for this display—the odds ratio. In Figure 4.6, for
example, the proportion of men and women, and the proportion of accepted applicants were equated
visually in each department. This provides a clear standard that also greatly facilitates controlled
comparison.

As mentioned in the introduction, another principle is visual impact—we want the important
features of the display to be easily distinguished from the less important (Tukey, 1993). Figure 4.6
distinguishes the one department for which the odds ratio differs significantly from 1 by shading
intensity, even though the same information can be found by inspection of the confidence rings.

EXAMPLE 4.12: Breathlessness and wheeze in coal miners
The various ways of standardizing a collection of 2× 2 tables allows visualizing relations with

different factors (row percentages, column percentages, strata totals) controlled. However, different
kinds of graphs can speak more eloquently to other questions by focusing more directly on the odds
ratio.

Agresti (2002, Table 9.8) cites data from Ashford and Sowden (1970) on the association between
two pulmonary conditions, breathlessness and wheeze, in a large sample of coal miners. The miners
are classified into age groups, and the question treated by Agresti is whether the association between
these two symptoms is homogeneous over age. These data are available in the CoalMiners data
in vcd, a 2 × 2 × 9 frequency table. The first group, aged 20–24 has been omitted from these
analyses.

5For multiple-strata plots, fourfold() by default adjusts the significance level for multiple testing, using Holm’s
(1979) method provided by p.adjust().

6Simpson’s paradox (Simpson, 1951) occurs in a three-way table, [A,B,C], when the marginal association between two
variables, A,B collapsing over C, differs in direction from the partial association A,B|C = ck at the separate levels of C.
Strictly speaking, Simpson’s paradox would require that for all departments separately the odds ratio θk < 1 (which occurs
for Departments A, B, D, and F in Figure 4.6) while in the aggregate data θ > 1.

7This explanation ignores the possibility of structural bias against women, e.g., lack of resources allocated to departments
that attract women applicants.
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> data("CoalMiners", package = "vcd")
> CM <- CoalMiners[, , 2 : 9]
> structable(. ~ Age, data = CM)

Breathlessness B NoB
Wheeze W NoW W NoW

Age
25-29 23 9 105 1654
30-34 54 19 177 1863
35-39 121 48 257 2357
40-44 169 54 273 1778
45-49 269 88 324 1712
50-54 404 117 245 1324
55-59 406 152 225 967
60-64 372 106 132 526

The question of interest can be addressed by displaying the odds ratio in the 2 × 2 tables with
the margins of breathlessness and wheeze equated (i.e., with the default std=’margins’ option),
which gives the graph shown in Figure 4.7. Although the panels for all age groups show an over-
whelmingly positive association between these two symptoms, one can also (by looking carefully)
see that the strength of this association declines with increasing age.

> fourfold(CM, mfcol = c(2, 4))
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Figure 4.7: Fourfold display for CoalMiners data, both margins equated.

However, note that the pattern of change over age is somewhat subtle compared to the dominant
positive association within each panel. When the goal is to display how the odds ratio varies with a
quantitative factor such as age, it is often better to simply calculate and plot the odds ratio directly.

The loddsratio() function in vcd calculates odds ratios. By default, it returns the log odds.
Use the option log=FALSE to get the odds ratios themselves. It is easy to see that the (log) odds
ratios decline with age.

> loddsratio(CM)

log odds ratios for Breathlessness and Wheeze by Age

25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64
3.6953 3.3983 3.1407 3.0147 2.7820 2.9264 2.4406 2.6380

> loddsratio(CM, log = FALSE)
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odds ratios for Breathlessness and Wheeze by Age

25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64
40.256 29.914 23.119 20.383 16.152 18.660 11.480 13.985

When the analysis goal is to understand how the odds ratio varies with a stratifying factor (which
could be a quantitative variable), it is often better to plot the odds ratio directly.

The lines below use the plot() method for "oddsratio" objects. This produces a line graph
of the log odds ratio against the stratum variable, together with confidence interval error bars. In
addition, because age is a quantitative variable, we can calculate and display the fitted relation for
a linear model relating lodds to age. Here, we try using a quadratic model (poly(age, 2))
mainly to see if the trend is nonlinear.

> lor_CM <- loddsratio(CM)
> plot(lor_CM, bars=FALSE, baseline=FALSE, whiskers=.2)
>
> lor_CM_df <- as.data.frame(lor_CM)
> age <- seq(25, 60, by = 5) + 2
> lmod <- lm(LOR ~ poly(age, 2), weights = 1 / ASE^2, data = lor_CM_df)
> grid.lines(seq_along(age), fitted(lmod),
+ gp = gpar(col = "red", lwd = 2), default.units = "native")
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Figure 4.8: Log odds plot for the CoalMiners data. The smooth curve shows a quadratic fit to age.

In Figure 4.8, it appears that the decline in the log odds ratio levels off with increasing age. One
virtue of fitting the model in this way is that we can test the additional contribution of the quadratic
term, which turns out to be insignificant.

> summary(lmod)

Call:
lm(formula = LOR ~ poly(age, 2), data = lor_CM_df, weights = 1/ASE^2)
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Weighted Residuals:
1 2 3 4 5 6 7 8

0.1617 0.0162 -0.2443 0.0627 -0.4971 1.6115 -1.5228 0.5851

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.9953 0.0783 38.28 2.3e-07 ***
poly(age, 2)1 -0.9977 0.2513 -3.97 0.011 *
poly(age, 2)2 0.1768 0.2171 0.81 0.452
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.06 on 5 degrees of freedom
Multiple R-squared: 0.782,Adjusted R-squared: 0.694
F-statistic: 8.94 on 2 and 5 DF, p-value: 0.0223

4

4.5 Sieve diagrams

The wise ones fashioned speech with their thought, sifting it as grain is sifted through a
sieve.

Buddha

For two- (and higher-) way contingency tables, the design principles of perception, detection,
and comparison (see Chapter 1) suggest that we should try to show the observed frequencies in rela-
tion to what we would expect those frequencies to be under a reasonable null model—for example,
the hypothesis that the row and column variables are unassociated.

To this end, several schemes for representing contingency tables graphically are based on the
fact that when the row and column variables are independent, the estimated expected frequencies,
mij , are products of the row and column totals (divided by the grand total).

mij =
ni+n+j
n++

.

Then, each cell can be represented by a rectangle whose area shows the observed cell frequency, nij ,
expected frequency, mij , or deviation (residual) from independence, nij − mij . Visual attributes
(color, shading) of the rectangles can be used to highlight the pattern of association.

4.5.1 Two-way tables
For example, for any two-way table, the expected frequencies under independence can be repre-
sented by rectangles whose widths are proportional to the total frequency in each column, n+j , and
whose heights are proportional to the total frequency in each row, ni+; the area of each rectangle is
then proportional to mij . Figure 4.9 (left) shows the expected frequencies for the hair and eye color
data (Table 4.2), calculated using independence_table() in vcd.

> haireye <- margin.table(HairEyeColor, 1:2)
> expected = independence_table(haireye)
> round(expected, 1)

Eye
Hair Brown Blue Hazel Green
Black 40.1 39.2 17.0 11.7
Brown 106.3 103.9 44.9 30.9
Red 26.4 25.8 11.2 7.7
Blond 47.2 46.1 20.0 13.7



4.5: Sieve diagrams 139

Expected frequencies
Eye

H
ai

r
Bl

on
d

R
ed

Br
ow

n
Bl

ac
k

Brown Blue Hazel Green

40.1 39.2 17 11.7

106.3 103.9 44.9 30.9

26.4 25.8 11.2 7.7

47.2 46.1 20 13.7

Observed frequencies
Eye

H
ai

r
Bl

on
d

R
ed

Br
ow

n
Bl

ac
k

Brown Blue Hazel Green

68 20 15 5

119 84 54 29

26 17 14 14

7 94 10 16

Figure 4.9: Sieve diagrams for the HairEyeColor data. Left: expected frequencies shown in
cells as numbers and the number of boxes; right: observed frequencies shown in cells.

Figure 4.9 (left) simply represents the model—what the frequencies would be if hair color and
eye color were independent—not the data. Note, however, that the rectangles are cross-ruled so that
the number of boxes in each (counting up the fractional bits) equals the expected frequency with
which the cell is labeled, and moreover, the rulings are equally spaced in all cells. Hence, cross-
ruling the cells to show the observed frequency would give a data display that implicitly compares
observed and expected frequencies as shown in Figure 4.9 (right).

Riedwyl and Schüpbach (1983, 1994) proposed a sieve diagram (later called a parquet dia-
gram) based on this principle. In this display the area of each rectangle is always proportional to
expected frequency but observed frequency is shown by the number of squares in each rectangle, as
in Figure 4.9 (right).

Hence, the difference between observed and expected frequency appears as variations in the
density of shading. Cells whose observed frequency nij exceeds the expected mij appear denser
than average. The pattern of positive and negative deviations from independence can be more easily
seen by using color, say, red for negative deviations, and blue for positive.8

EXAMPLE 4.13: Hair color and eye color
The sieve diagram for hair color and eye color shown in Figure 4.9 (right) can be interpreted as

follows: The pattern of color and shading shows the high frequency of blue-eyed blonds and people
with brown eyes and dark hair. People with hazel eyes are also more likely to have red or brown
hair, and those with green eyes more likely to have red or blond hair, than would be observed under
independence. 4

EXAMPLE 4.14: Visual acuity
In World War II, all workers in the UK Royal Ordnance factories were given test of visual

acuity (unaided distance vision) of their left and right eyes on a 1 (high) to 4 (low) scale. The
dataset VisualAcuity in vcd gives the results for 10,719 workers (3,242 men, 7,477 women)
aged 30–39.

Figure 4.10 shows the sieve diagram for data from the larger sample of women (Kendall and

8Positive residuals are also shown by solid lines, negative residuals by broken lines, so that they may still be distinguished
in monochrome versions.
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Stuart (1961, Table 33.5) and Bishop et al. (1975, p. 284)). The VisualAcuity data is a fre-
quency data frame and we first convert it to table form (VA), a 4×4×2 table to re-label the variables
and levels.

> # re-assign names/dimnames
> data("VisualAcuity", package = "vcd")
> VA <- xtabs(Freq ~ right + left + gender, data = VisualAcuity)
> dimnames(VA)[1:2] <- list(c("high", 2, 3, "low"))
> names(dimnames(VA))[1:2] <- paste(c("Right", "Left"), "eye grade")
> structable(aperm(VA))

Left eye grade high 2 3 low
gender Right eye grade
male high 821 112 85 35

2 116 494 145 27
3 72 151 583 87
low 43 34 106 331

female high 1520 266 124 66
2 234 1512 432 78
3 117 362 1772 205
low 36 82 179 492

> sieve(VA[, , "female"], shade = TRUE)
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Figure 4.10: Vision classification for 7,477 women in Royal Ordnance factories. The high fre-
quencies in the diagonal cells indicate the main association, but a subtler pattern also appears in the
symmetric off-diagonal cells.

The diagonal cells show the obvious: people tend to have the same visual acuity in both eyes, and
there is strong lack of independence. The off diagonal cells show a more subtle pattern that suggests
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symmetry—the cells below the diagonal are approximately equally dense as the corresponding cells
above the diagonal. Moreover, the relatively consistent pattern on the diagonals ±1,±2, . . . away
from the main diagonals suggests that the association may be explained in terms of the difference in
visual acuity between the two eyes.

These suggestions can be tested by fitting intermediate models between the null model of inde-
pendence (which fits terribly) and the saturated model (which fits perfectly), as we shall see later in
this book. A model of quasi-independence, for example (see Example 10.5 in Chapter 9) ignores
the diagonal cells and tests whether independence holds for the remainder of the table. The symme-
try model for a square table allows association, but constrains the expected frequencies above and
below the main diagonal to be equal. Such models provide a way of testing specific explanatory
models that relate to substantive hypotheses and what we observe in our visualizations. These and
other models for square tables are discussed further in Section 10.2. 4

4.5.2 Larger tables: The strucplot framework

The implementation of sieve diagrams in vcd is far more general than illustrated in the examples
above. For one thing, the sieve function has a formula method, which allows one to specify the
variables in the display as a model formula. For example, for the VisualAcuity data, a plot of
the (marginal) frequencies for left and right eye grades pooling over gender can be obtained with
the call below (this plot is not shown).

> sieve(Freq ~ right + left, data = VisualAcuity, shade = TRUE)

More importantly, sieve diagrams are just one example of the strucplot framework, a general
system for visualizing n-way frequency tables in a hierarchical way. We describe this framework
in more detail in Section 5.3 in the context of mosaic displays. For now, we just illustrate the
extension of the formula method to provide for conditioning variables. In the call below, the formula
Freq ~ right + left | gender means to produce a separate block in the plot for the
levels of gender. The set_varnames argument relabels the variable names.

> sieve(Freq ~ right + left | gender, data = VisualAcuity,
+ shade = TRUE, set_varnames = c(right = "Right eye grade",
+ left = "Left eye grade"))

In Figure 4.11, the relative sizes of the blocks for the conditioning variable (gender) show the
much larger number of women than men in this data. Within each block, color and density of the
box rules shows the association of left and right acuity, and it appears that the pattern for men is
similar to that observed for women.

An alternative way of visualizing stratified data is a coplot or conditioning plot, which, for each
stratum, shows an appropriate display for a subset of the data. Figure 4.12 visualizes separate sieve
plots for men and women:

> cotabplot(VA, cond = "gender", panel = cotab_sieve, shade = TRUE)

The main difference to the extended sieve plots is that the distribution of the conditioning vari-
able is not shown, which basically is a loss of information, but advantageous if the distribution of
the conditioning variable(s) is highly skewed, since the partial displays of small strata will not be
distorted.

The methods described in Section 4.3.2 can be used to test the hypothesis of homogeneity of
association, and loglinear models described in Chapter 9 provide specific tests of hypotheses of
symmetry, quasi-independence, and other models for structured associations.
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Figure 4.11: Sieve diagram for the three-way table of VisualAcuity, conditioned on gender.
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Figure 4.12: Conditional Sieve diagram for the three-way table of VisualAcuity, conditioned on
gender.
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EXAMPLE 4.15: Berkeley admissions
This example illustrates some additional flexibility of sieve plots with the strucplot framework,

using the Berkeley admissions data. The left panel of Figure 4.13 shows the sieve diagrams for the
relation between department and admission, conditioned by gender. It can easily be seen that (a)
overall, there were more male applicants than female; (b) there is a moderately similar pattern of
observed > expected (blue) for males and females.

> # conditioned on gender
> sieve(UCBAdmissions, shade = TRUE, condvar = 'Gender')
> # three-way table, Department first, with cell labels
> sieve(~ Dept + Admit + Gender, data = UCBAdmissions,
+ shade = TRUE, labeling = labeling_values,
+ gp_text = gpar(fontface = 2), abbreviate_labs = c(Gender = TRUE))
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Figure 4.13: Sieve diagrams for the three-way table of the Berkeley admissions data. Left: Admit
by Dept, conditioned on Gender; right: Dept re-ordered as the first splitting variable.

In the right panel of Figure 4.13, the three-way table was first permuted to make Dept the first
splitting variable. Each 2 × 2 table of Admit by Gender then appears, giving a sieve diagram
version of what we showed earlier in fourfold displays (Figure 4.6). The labeling argument is
used here to write the cell frequency in each rectangle. gp_text renders them in bold font, and
abbreviate_labs abbreviates the gender labels to avoid overplotting.

Alternatively, we can again use coplots to visualize conditioned sieve plots for this data. The
following calls produce Figure 4.14 and Figure 4.15, with different conditioning and styles.

> cotabplot(UCBAdmissions, cond = "Gender", panel = cotab_sieve,
+ shade = TRUE)

> cotabplot(UCBAdmissions, cond = "Dept", panel = cotab_sieve,
+ shade = TRUE, labeling = labeling_values,
+ gp_text = gpar(fontface = "bold"))

Remark

Finally, for tables of more than two dimensions, there is a variety of different models for “indepen-
dence” (discussed in Chapter 9 on log-linear models), and the strucplot framework allows these to
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Figure 4.14: Conditional Sieve diagram for the three-way table of the Berkeley data, conditioned
on gender.
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Figure 4.15: Conditional Sieve diagram for the three-way table of the Berkeley data, conditioned
on department.
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be specified with the expected argument, either as an array of numbers conforming to the data
argument, or as a model formula for loglm().

For example, a sieve diagram may be used to determine if the association between gender and
department is the same across departments by fitting the model ~ Admit * Gender + Dept,
which says that Dept is independent of the combinations of Admit and Gender. This is done as
shown below, giving the plot in Figure 4.16.

> UCB2 <- aperm(UCBAdmissions, c(3, 2, 1))
> sieve(UCB2, shade = TRUE, expected = ~ Admit * Gender + Dept,
+ split_vertical = c(FALSE, TRUE, TRUE))

Gender

Admit

D
ep

t
F

Admitted Rejected Admitted Rejected

E
D

C
B

A

Male Female

Figure 4.16: Sieve diagram for the Berkeley admissions data, fitting the model of joint indepen-
dence, Admit * Gender + Dept.

In terms of the loglinear models discussed in Chapter 5, this is equivalent to fitting the model
of joint independence, [Admit Gender][Dept]. Figure 4.16 shows the greater numbers of male
applicants in departments A and B (whose overall rate of admission is high) and greater numbers of
female applicants in the remaining departments (where the admission rate is low).

4

4.6 Association plots

In the sieve diagram the foreground (rectangles) shows expected frequencies; deviations from inde-
pendence are shown by color and density of shading. The association plot (Cohen, 1980, Friendly,
1991) puts deviations from independence in the foreground: the area of each box is made propor-
tional to the (observed − expected) frequency.

For a two-way contingency table, the signed contribution to Pearson χ2 for cell i, j is

rij =
nij −mij√

mij
= Pearson residual, χ2 =

∑
i,j

r2ij . (4.5)
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In the association plot, each cell is shown by a rectangle, having:

• (signed) height ∼ rij ,
• width =√mij ,

so, the area of each cell is proportional to the raw residual, nij −mij . The rectangles for each row
in the table are positioned relative to a baseline representing independence (rij = 0) shown by a
dotted line. Cells with observed > expected frequency rise above the line (and are colored blue);
cells that contain less than the expected frequency fall below it (and are shaded red).

> assoc(~ Hair + Eye, data = HairEyeColor, shade = TRUE)
> assoc(HairEyeColor, shade = TRUE)
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Figure 4.17: Association plot for the hair-color eye-color data. Left: marginal table, collapsed over
gender; right: full table.

Figure 4.17 (left) shows the association plot for the data on hair color and eye color. In con-
structing this plot, each rectangle is shaded according to the value of the Pearson residual from
Eqn. (4.5), using a simple scale shown in the legend, where residuals |rij | > 2 are shaded blue or
red depending on their sign, and residuals |rij | > 4 are shaded with a more saturated color.

One virtue of the association plot is that it is quite simple to interpret in terms of the pattern
of positive and negative rij values. Bertin (1981) uses similar graphics to display large complex
contingency tables. Like the sieve diagram, however, patterns of association are most apparent
when the rows and columns of the display are ordered in a sensible way.

We note here that the association plot also belongs to the strucplot framework and thus extends
to higher-way tables. For example, the full HairEyeColor table is also classified by Sex. The
plot for the three-way table is shown in Figure 4.17 (right). In this plot the third table variable (Sex
here) is shown nested within the first two, allowing easy comparison of the profiles of hair and eye
color for males and females.

4.7 Observer agreement

When the row and column variables represent different observers’ rating the same subjects or ob-
jects, interest is focused on observer agreement rather than mere association. In this case, measures
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and tests of agreement provide a method of assessing the reliability of a subjective classification or
assessment procedure.

For example, two (or more) clinical psychologists might classify patients on a scale with cat-
egories (a) normal, (b) mildly impaired, (c) severely impaired. Or, ethologists might classify the
behavior of animals in categories of cooperation, dominance and so forth, or paleologists might clas-
sify pottery fragments according to categories of antiquity or cultural groups. As these examples
suggest, the rating categories are often ordered, but not always.

For two raters, a contingency table can be formed by classifying all the subjects/objects rated
according to the rating categories used by the two observers. In most cases, the same categories are
used by both raters, so the contingency table is square, and the entries in the diagonal cells are the
cases where the raters agree.

In this section we describe some measures of the strength of agreement and then a method for
visualizing the pattern of agreement. But first, the following examples show some typical agreement
data.

EXAMPLE 4.16: Sex is fun
The SexualFun table in vcd (Agresti (1990, Table 2.10), from Hout et al. (1987)) summarizes

the responses of 91 married couples to a questionnaire item: “Sex is fun for me and my partner: (a)
Never or occasionally, (b) Fairly often, (c) Very often, (d) Almost always.”

> data("SexualFun", package = "vcd")
> SexualFun

Wife
Husband Never Fun Fairly Often Very Often Always fun
Never Fun 7 7 2 3
Fairly Often 2 8 3 7
Very Often 1 5 4 9
Always fun 2 8 9 14

In each row the diagonal entry is not always the largest, though it appears that the partners tend
to agree more often when either responds “Almost always.” 4

EXAMPLE 4.17: Diagnosis of MS patients
Landis and Koch (1977) gave data on the diagnostic classification of multiple sclerosis (MS)

patients by two neurologists, one from Winnipeg and one from New Orleans. There were two
samples of patients, 149 from Winnipeg and 69 from New Orleans, and each neurologist classified
all patients into one of four diagnostic categories: (a) Certain MS, (b) Probable MS, (c) Possible
MS, (d) Doubtful, unlikely, or definitely not MS.

These data are available in MSPatients, a 4 × 4 × 2 table, as shown below. It is convenient
to show the data in separate slices for the Winnipeg and New Orleans patients:

> MSPatients[, , "Winnipeg"]

Winnipeg Neurologist
New Orleans Neurologist Certain Probable Possible Doubtful

Certain 38 5 0 1
Probable 33 11 3 0
Possible 10 14 5 6
Doubtful 3 7 3 10

> MSPatients[, , "New Orleans"]

Winnipeg Neurologist
New Orleans Neurologist Certain Probable Possible Doubtful
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Certain 5 3 0 0
Probable 3 11 4 0
Possible 2 13 3 4
Doubtful 1 2 4 14

> apply(MSPatients, 3, sum) # show sample sizes

Winnipeg New Orleans
149 69

In this example, note that the distribution of degree of severity of MS may differ between the
two patient samples. As well, for a given sample, the two neurologists may be more or less strict
about the boundaries between the rating categories.

4

4.7.1 Measuring agreement

In assessing the strength of agreement we usually have a more stringent criterion than in measuring
the strength of association, because observers ratings can be strongly associated without strong
agreement. For example, one rater could use a more stringent criterion and thus consistently rate
subjects one category lower (on an ordinal scale) than another rater.

More generally, measures of agreement must take account of the marginal frequencies with
which two raters use the categories. If observers tend to use the categories with different frequency,
this will affect measures of agreement.

Here we describe some simple indices that summarize agreement with a single score (and asso-
ciated standard errors or confidence intervals). Von Eye and Mun (2006) treat this topic from the
perspective of loglinear models.

4.7.1.1 Intraclass correlation

An analysis of variance framework leads to the intraclass correlation as a measure of inter-rater
reliability, particularly when there are more than two raters. This approach is not covered here, but
various applications are described by Shrout and Fleiss (1979), and implemented in R in ICC() in
the psych (Revelle, 2015) package.

4.7.1.2 Cohen’s Kappa

Cohen’s kappa (κ) (Cohen, 1960, 1968) is a commonly used measure of agreement that compares
the observed agreement to agreement expected by chance if the two observer’s ratings were inde-
pendent. If pij is the probability that a randomly selected subject is rated in category i by the first
observer and in category j by the other, then the observed agreement is the sum of the diagonal
entries, Po =

∑
i pii. If the ratings were independent, this probability of agreement (by chance)

would be Pc =
∑
i pi+ p+i. Cohen’s κ is then the ratio of the difference between actual agreement

and chance agreement, Po − Pc, to the maximum value this difference could obtain:

κ =
Po − Pc
1− Pc

. (4.6)

When agreement is perfect, κ = 1; when agreement is no better than would be obtained from
statistically independent ratings, κ = 0. κ could conceivably be negative, but this rarely occurs in
practice. The minimum possible value depends on the marginal totals.

For large samples (n++), κ has an approximate normal distribution when H0 : κ = 0 is true
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and its standard error (Fleiss, 1973, Fleiss et al., 1969) is given by

σ̂(κ) =
Pc + P 2

c −
∑
i pi+p+i(pi+ + p+i)

n++(1− Pc)2
.

Hence, it is common to conduct a test of H0 : κ = 0 by referring z = κ/σ̂(κ) to a unit normal
distribution. The hypothesis of agreement no better than chance is rarely of much interest, however.
It is preferable to estimate and report a confidence interval for κ.

4.7.1.3 Weighted Kappa

The original (unweighted) κ only counts strict agreement (the same category is assigned by both
observers). A weighted version of κ (Cohen, 1968) may be used when one wishes to allow for
partial agreement. For example, exact agreements might be given full weight, while a one-category
difference might be given a weight of 1/2. This typically makes sense only when the categories are
ordered, as in severity of diagnosis.

Weighted κ uses weights, 0 ≤ wij ≤ 1 for each cell in the table, with wii = 1 for the diagonal
cells. In this case Po and Pc are defined as weighted sums

Po =
∑
i

∑
j

wijpij

Pc =
∑
i

∑
j

wijpi+p+j

and these weighted sums are used in Eqn. (4.6).
For an R × R table, two commonly used patterns of weights are those based on equal spacing

of weights (Cicchetti and Allison, 1971) for a near-match, and Fleiss-Cohen weights (Fleiss and
Cohen, 1972), based on an inverse-square spacing,

wij = 1− |i−j|R−1 equal spacing

wij = 1− |i−j|2
(R−1)2 Fleiss-Cohen

The Fleiss-Cohen weights attach greater importance to near disagreements, as you can see below
for a 4× 4 table. These weights also provide a measure equivalent to the intraclass correlation.

Integer Spacing Inverse Square Spacing
Cicchetti Allison weights Fleiss-Cohen weights

---------------------------- ---------------------------
1 2/3 1/3 0 1 8/9 5/9 0

2/3 1 2/3 1/3 8/9 1 8/9 5/9
1/3 2/3 1 2/3 5/9 8/9 1 8/9
0 1/3 2/3 1 0 5/9 8/9 1

4.7.1.4 Computing Kappa

The function Kappa() in vcd calculates unweighted and weighted Kappa. The weights
argument can be used to specify the weighting scheme as either "Equal-Spacing"
or "Fleiss-Cohen". The function returns a "Kappa" object, for which there is a
confint.Kappa() method, providing confidence intervals. The summary.Kappa() method
also prints the weights.

The lines below illustrate Kappa for the SexualFun data.
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> Kappa(SexualFun)

value ASE z Pr(>|z|)
Unweighted 0.129 0.0686 1.89 0.05939
Weighted 0.237 0.0783 3.03 0.00244

> confint(Kappa(SexualFun))

Kappa lwr upr
Unweighted -0.0051204 0.26378
Weighted 0.0838834 0.39088

4.7.2 Observer agreement chart
The observer agreement chart proposed by Bangdiwala (1985, 1987) provides a simple graphic
representation of the strength of agreement in a contingency table, and alternative measures of
strength of agreement with an intuitive interpretation. More importantly, it shows the pattern of
disagreement when agreement is less than perfect.

4.7.2.1 Construction of the basic plot

Given a k × k contingency table, the agreement chart is constructed as an n × n square, where
n = n++ is the total sample size. Black squares, each of size nii × nii, show observed agreement.
These are positioned within k larger rectangles, each of size ni+ × n+i as shown in the left panel
of Figure 4.18. Each rectangle is subdivided by the row/column frequencies nij of row i/column j,
where cell (i, i) is filled black. The large rectangle shows the maximum possible agreement, given
the marginal totals. Thus, a visual impression of the strength of agreement is given by

B =
area of dark squares
area of rectangles

=

∑k
i n

2
ii∑k

i ni+ n+i
. (4.7)

When there is perfect agreement, the k rectangles determined by the marginal totals are all squares,
completely filled by the shaded squares reflecting the diagonal nii entries, and B = 1.

> agreementplot(SexualFun, main = "Unweighted", weights = 1)
> agreementplot(SexualFun, main = "Weighted")

4.7.2.2 Partial agreement

Partial agreement is allowed by including a weighted contribution from off-diagonal cells, b steps
from the main diagonal. For a given cell frequency, nij , a pattern of weights, w1, w2, . . . , wb is
applied to the cell frequencies as shown schematically below:

ni−b,i
...

ni,i−b · · · ni,i · · · ni,i+b
...

ni+b,i

⇐

wb
...

wb · · · 1 · · · wb
...
wb

These weights are incorporated in the agreement chart (right panel of Figure 4.18) by succes-
sively lighter shaded rectangles whose size is proportional to the sum of the cell frequencies, denoted



4.7: Observer agreement 151

Unweighted

Wife

H
us

ba
nd

Never Fun

N
ev

er
 F

un

Fairly Often

Fa
irl

y 
O

fte
n

Very Often

Ve
ry

 O
fte

n

Always fun

Al
wa

ys
 fu

n

12 28 18 33

19

20

19

33

Weighted

Wife

H
us

ba
nd

Never Fun

N
ev

er
 F

un

Fairly Often

Fa
irl

y 
O

fte
n

Very Often

Ve
ry

 O
fte

n

Always fun

Al
wa

ys
 fu

n

12 28 18 33

19

20

19

33

Figure 4.18: Agreement charts for husbands’ and wives’ sexual fun. Left: unweighted chart, show-
ing only exact agreement; right: weighted chart, using weight w1 = 8/9 for a one-step disagree-
ment.

Abi, shown above. A1i allows 1-step disagreements, using weights 1 and w1; A2i includes 2-step
disagreements, etc. From this, one can define a weighted measure of agreement, Bw, analogous to
weighted κ:

Bw =
weighted sum of areas of agreement

area of rectangles
= 1−

∑k
i [ni+n+i − n2ii −

∑q
b=1 wbAbi]∑k

i ni+ n+i

where wb is the weight for Abi, the shaded area b steps away from the main diagonal, and q is the
furthest level of partial disagreement to be considered.

The function agreementplot() actually calculates both B and Bw and returns them invisi-
bly as the result of the call. The results, B = 0.146, and Bw = 0.498, indicate a stronger degree of
agreement when 1-step disagreements are included.

> B <- agreementplot(SexualFun)
> unlist(B)[1 : 2]

Bangdiwala Bangdiwala_Weighted
0.14646 0.49817

EXAMPLE 4.18: Mammogram ratings
The Mammograms data in vcdExtra gives a 4× 4 table of (probably contrived) ratings of 110

mammograms by two raters from Kundel and Polansky (2003), used to illustrate the calculation and
interpretation of agreement measures in this context.9

> data("Mammograms", package = "vcdExtra")
> B <- agreementplot(Mammograms, main = "Mammogram ratings")

The agreement plot in Figure 4.19 shows substantial agreement among the two raters, particu-
larly when one-step disagreements are taken into account. Careful study of this graph shows that

9In practice, of course, rater agreement on severity of diagnosis from radiology images varies with many factors. See
Antonio and Crespi (2010) for a meta-analytic study concerning agreement in breast cancer diagnosis.
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Figure 4.19: Agreement plot for the Mammograms data.

the two raters more often agree exactly for the extreme categories of “Absent” and “Severe.” The
amounts of unweighted and weighted agreement are shown numerically in the B and Bw statistics.

> unlist(B)[1 : 2]

Bangdiwala Bangdiwala_Weighted
0.42721 0.83665

4

4.7.3 Observer bias in agreement
With an ordered scale, it may happen that one observer consistently tends to classify the objects
into higher or lower categories than the other, perhaps due to using stricter thresholds for the bound-
aries between adjacent categories. This bias produces differences in the marginal totals, (ni+ and
n+i), and decreases the maximum possible agreement. While special tests exist for marginal ho-
mogeneity, the observer agreement chart shows this directly by the relation of the dark squares to
the diagonal line: When the marginal totals are the same, the squares fall along the diagonal. The
measures of agreement, κ and B, cannot determine whether lack of agreement is due to such bias,
but the agreement chart can detect this.

EXAMPLE 4.19: Diagnosis of MS patients
Agreement charts for both patient samples in the MSPatients data are shown in Figure 4.20.

The agreementplot() function only handles two-way tables, so we use cotabplot() with
the agreementplot panel function to handle the Patients stratum:

> cotabplot(MSPatients, cond = "Patients", panel = cotab_agreementplot,
+ text_gp = gpar(fontsize = 18), xlab_rot=20)
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Figure 4.20: Weighted agreement charts for both patient samples in the MSPatients data. Departure
of the middle rectangles from the diagonal indicates lack of marginal homogeneity.

It can be seen that, for both groups of patients, the rectangles for the two intermediate categories
lie largely below the diagonal line (representing equality). This indicates that the Winnipeg neu-
rologist tends to classify patients into more severe diagnostic categories. The departure from the
diagonal is greater for the Winnipeg patients, for whom the Winnipeg neurologist uses the two most
severe diagnostic categories very often, as can also be seen from the marginal totals printed in the
plot margins.

Nevertheless, there is a reasonable amount of agreement if one-step disagreements are allowed,
as can be seen in Figure 4.20 and quantified in the Bw statistics below. The agreement charts also
serve to explain why the B measures for exact agreement are so much lower.

> agr1 <- agreementplot(MSPatients[, , "Winnipeg"])
> agr2 <- agreementplot(MSPatients[, , "New Orleans"])
> rbind(Winnipeg = unlist(agr1), NewOrleans = unlist(agr2))[, 1 : 2]

Bangdiwala Bangdiwala_Weighted
Winnipeg 0.27210 0.73808
NewOrleans 0.28537 0.82231

4

4.8 Trilinear plots

The trilinear plot (also called a ternary diagram or trinomial plot) is a specialized display for a
3-column contingency table or for three variables whose relative proportions are to be displayed.
Individuals may be assigned to one of three diagnostic categories, for example, or a chemical process
may yield three constituents in varying proportions, or we may look at the division of votes among
three parties in a parliamentary election. This display is useful, therefore, for both frequencies and
proportions.
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Trilinear plots are featured prominently in Aitchison (1986), who describes statistical models
for this type of compositional data. Upton (1976, 1994) uses them in detailed analyses of spatial
and temporal changes in British general elections. Wainer (1996) reviews a variety of other uses of
trilinear plots and applies them to aid in understanding the distributions of students’ achievement
in the National Assessment of Educational Progress, making some aesthetic improvements to the
traditional form of these plots along the way.

A trilinear plot displays each observation as a point inside an equilateral triangle whose coordi-
nates correspond to the relative proportions in each column. The three vertices represent the three
extremes when 100% occurs in one of the three columns; a point in the exact center corresponds to
equal proportions of 1

3 in all three columns. In fact, each point represents the (weighted) barycen-
ter of the triangle, the coordinates representing weights placed at the corresponding vertices. For
instance, Figure 4.21 shows three points whose compositions of three variables, A, B, and C, are
given in the data frame DATA below.

> library(ggtern)
> DATA <- data.frame(
+ A = c(40, 20, 10),
+ B = c(30, 60, 10),
+ C = c(30, 20, 80),
+ id = c("1", "2", "3"))
>
> aesthetic_mapping <- aes(x = C, y = A, z = B, colour = id)
> ggtern(data = DATA, mapping = aesthetic_mapping) +
+ geom_point(size = 4) +
+ theme_rgbw()

(The plot shown requires some more cosmetic parameters not shown for simplicity).
Note that each apex corresponds to 100% of the labeled variable, and the percentage of this

variable decreases linearly along a line to the midpoint of the opposite baseline. The grid lines in
the figure show the percentage value along each axis.

The construction of trilinear plots is described in detail in http://en.wikipedia.org/
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Figure 4.21: A trilinear plot showing three points, for variables A, B, C.

http://en.wikipedia.org/
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wiki/Ternary_plot. Briefly, let P (a, b, c) represent the three components normalized so that
a+ b+ c = 1.0. If the apex corresponding to Point A in Figure 4.21 is given (x, y) coordinates of
(xA, yA) = (0, 0), and those at apex B are (xB , yB) = (100, 0), then the coordinates of apex C are
(xC , yC) = (50, 50

√
3). The cartesian coordinates (xP , yP ) of point P are then calculated as

yP = c yC

xP = yP

(
yC − yB
xC − xB

)
+

√
3

2
yC(1− a) .

In R, trilinear plots are implemented in the triplot() function in the TeachingDemos (Snow,
2013) package, and also in the ggtern (Hamilton, 2014) package, an extension of the ggplot2
framework. The latter is much more flexible, because it inherits all of the capabilities of ggplot2
for plot annotations, faceting, and layers. In essence, the function ggtern() is just a wrapper for
ggplot(...), which adds a change in the coordinate system from cartesian (x, y) coordinates to
the ternary coordinate system with coord_tern().

EXAMPLE 4.20: Lifeboats on the Titanic
We examine the question of who survived and why in the sinking of the RMS Titanic in Chapter 5

(Example 5.19, Example 5.21, Exercise 5.12), where we analyze a four-way table, Titanic, of
the 2, 201 people on board (1, 316 passengers and 885 crew), classified by Class, Sex, Age,
and Survival. A related data set, Lifeboats in vcd, tabulates the survivors according to the
lifeboats on which they were loaded. This data sheds some additional light on the issue of survival
and provides a nice illustration of trilinear plots.

A bit of background: after the disaster, the British Board of Trade launched several inquiries,
the most comprehensive of which resulted in the Report on the Loss of the “Titanic” (S.S.) by Lord
Mersey (Mersey, 1912).10 The data frame Lifeboats in vcd contains the data listed on page 38
of that report.11

Of interest here is the composition of the boats by the three categories: men, women and chil-
dren, and crew, and according to the launching of the boats from the port or starboard side. This can
be shown in a trilinear display using the following statements. The plot, shown in Figure 4.22, has
most of the points near the bottom left, corresponding to a high percentage of women and children.
We create a variable, id, used to label those boats with more than 10% male passengers. In the
ggplot2 framework, plot aesthetics such as color and shape can be mapped to variables in the
data set, and here we map these both to side of the boat.

> data("Lifeboats", package = "vcd")
> # label boats with more than 10% men
> Lifeboats$id <- ifelse(Lifeboats$men / Lifeboats$total > .1,
+ as.character(Lifeboats$boat), "")
>
> AES <- aes(x = women, y = men, z = crew, colour = side, shape = side,
+ label = id)
> ggtern(data = Lifeboats, mapping = AES) +
+ geom_text() +
+ geom_point(size=2) +
+ geom_smooth_tern(method = "lm", alpha = 0.2)

10The Titanic was outfitted with 20 boats, half on each of the port and starboard sides, of which 14 were large lifeboats
with a capacity of 65, two were emergency boats designed for 40 persons, and the remaining four were collapsible boats
capable of holding 47, a total capacity of 1, 178 (considered adequate at that time). Two of the collapsible boats, lashed to
the roof of the officers’ quarters, were ineffectively launched and utilized as rafts after the ship sunk. The report lists the
time of launch and composition of the remaining 18 boats according to male passengers, women and children, and “men of
crew,” as reported by witnesses.

11The “data” lists a total of 854 in 18 boats, although only 712 were in fact saved. Mersey notes “it is obvious that these
figures are quite unreliable.”
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Figure 4.22: Lifeboats on the Titanic, showing the composition of each boat. Boats with more than
10% male passengers are labeled.

The resulting plot in Figure 4.22 (for which some more cosmetic parameters than shown in
the code above have been used) makes it immediately apparent that many of the boats launched
from the port side differ substantially from the starboard boats, whose passengers were almost
entirely women and children. Boat 1 had only 20% (2 out of 10) women and children, while the
percentage for boat 3 was only 50% (25 out of 50). We highlight the difference in composition
of the boats launched from the two sides by adding seperate linear regression lines for the relation
men ~ women.

The trilinear plot scales the numbers for each observation to sum to 1.0, so differences in the
total number of people on each boat cannot be seen in Figure 4.22. The total number reported
loaded is plotted against launch time in Figure 4.23, with a separate regression line and loess
smooth fit to the data for the port and starboard sides (code again simplified for clarity):

> AES <- aes(x = launch, y = total, colour = side, label = boat)
> ggplot(data = Lifeboats, mapping = AES) +
+ geom_text() +
+ geom_smooth(method = "lm", aes(fill = side), size = 1.5) +
+ geom_smooth(method = "loess", aes(fill = side), se = FALSE,
+ size = 1.2)

From the linear regression lines in Figure 4.23, it seems that the rescue effort began in panic
on the port side, with relatively small numbers loaded, and (from Figure 4.22), small proportions
of women and children. But the loading regime on that side improved steadily over time. The
procedures began more efficiently on the starboard side but the numbers loaded increased only
slightly. The smoothed loess curves indicate that over time, for each side, there was still a large
variability from boat to boat.

4
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Figure 4.23: Number of people loaded on lifeboats on the Titanic vs. time of launch, by side of
boat. The plot annotations show the linear regression and loess smooth.

4.9 Chapter summary

• A contingency table gives the frequencies of observations cross-classified by two or more cat-
egorical variables. With such data we are typically interested in testing whether associations
exist, quantifying the strength of association, and understanding the nature of the association
among these variables.

• For 2 × 2 tables, association is easily summarized in terms of the odds ratio or its logarithm.
This measure can be extended to stratified 2 × 2 × k tables, where we can also assess whether
the odds ratios are equal across strata or how they vary.

• For R × C tables, measures and tests of general association between two categorical vari-
ables are most typically carried out using the Pearson’s chi-squared or likelihood-ratio tests pro-
vided by assocstats(). Stratified tests controlling for one or more background variables,
and tests for ordinal categories, are provided by the Cochran–Mantel–Haenszel tests given by
CMHtest().

• For 2 × 2 tables, the fourfold display provides a visualization of the association between vari-
ables in terms of the odds ratio. Confidence rings provide a visual test of whether the odds
ratio differs significantly from 1. Stratified plots for 2 × 2 × k tables are also provided by
fourfold().

• Sieve diagrams and association plots provide other useful displays of the pattern of association
in R× C tables. These also extend to higher-way tables as part of the strucplot framework.

• When the row and column variables represent different observers rating the same subjects, inter-
est is focused on agreement rather than mere association. Cohen’s κ is one measure of strength
of agreement. The observer agreement chart provides a visual display of how the observers
agree and disagree.

• Another specialized display, the trilinear plot, is useful for three-column frequency tables or
compositional data.
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4.10 Lab exercises

Exercise 4.1 The data set fat, created below, gives a 2×2 table recording the level of cholesterol
in diet and the presence of symptoms of heart disease for a sample of 23 people.

> fat <- matrix(c(6, 4, 2, 11), 2, 2)
> dimnames(fat) <- list(diet = c("LoChol", "HiChol"),
+ disease = c("No", "Yes"))

(a) Use chisq.test(fat) to test for association between diet and disease. Is there any indi-
cation that this test may not be appropriate here?

(b) Use a fourfold display to test this association visually. Experiment with the different options
for standardizing the margins, using the margin argument to fourfold(). What evidence
is shown in different displays regarding whether the odds ratio differs significantly from 1?

(c) oddsratio(fat, log = FALSE) will give you a numerical answer. How does this
compare to your visual impression from fourfold displays?

(d) With such a small sample, Fisher’s exact test may be more reliable for statistical inference.
Use fisher.test(fat), and compare these results to what you have observed before.

(e) Write a one-paragraph summary of your findings and conclusions for this data set.

Exercise 4.2 The data set Abortion in vcdExtra gives a 2 × 2 × 2 table of opinions regarding
abortion in relation to sex and status of the respondent. This table has the following structure:

> data("Abortion", package = "vcdExtra")
> str(Abortion)

table [1:2, 1:2, 1:2] 171 152 138 167 79 148 112 133
- attr(*, "dimnames")=List of 3
..$ Sex : chr [1:2] "Female" "Male"
..$ Status : chr [1:2] "Lo" "Hi"
..$ Support_Abortion: chr [1:2] "Yes" "No"

(a) Taking support for abortion as the outcome variable, produce fourfold displays showing the
association with sex, stratified by status.

(b) Do the same for the association of support for abortion with status, stratified by sex.
(c) For each of the problems above, use oddsratio() to calculate the numerical values of the

odds ratio, as stratified in the question.
(d) Write a brief summary of how support for abortion depends on sex and status.

Exercise 4.3 The JobSat table on income and job satisfaction created in Example 2.5 is con-
tained in the vcdExtra package.

(a) Carry out a standard χ2 test for association between income and job satisfaction. Is there any
indication that this test might not be appropriate? Repeat this test using simulate.p.value
= TRUE to obtain a Monte Carlo test that does not depend on large sample size. Does this
change your conclusion?

(b) Both variables are ordinal, so CMH tests may be more powerful here. Carry out that analysis.
What do you conclude?

Exercise 4.4 The Hospital data in vcd gives a 3× 3 table relating the length of stay (in years)
of 132 long-term schizophrenic patients in two London mental hospitals with the frequency of visits
by family and friends.
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(a) Carry out a χ2 test for association between the two variables.
(b) Use assocstats() to compute association statistics. How would you describe the strength

of association here?
(c) Produce an association plot for these data, with visit frequency as the vertical variable. De-

scribe the pattern of the relation you see here.
(d) Both variables can be considered ordinal, so CMHtest() may be useful here. Carry out that

analysis. Do any of the tests lead to different conclusions?

Exercise 4.5 Continuing with the Hospital data:

(a) Try one or more of the following other functions for visualizing two-way contingency ta-
bles with this data: plot(), tile(), mosaic(), and spineplot(). [For all except
spineplot(), it is useful to include the argument shade=TRUE].

(b) Comment on the differences among these displays for understanding the relation between
visits and length of stay.

Exercise 4.6 The two-way table Mammograms in vcdExtra gives ratings on the severity of diag-
nosis of 110 mammograms by two raters.

(a) Assess the strength of agreement between the raters using Cohen’s κ, both unweighted and
weighted.

(b) Use agreementplot() for a graphical display of agreement here.
(c) Compare the Kappa measures with the results from assocstats(). What is a reasonable

interpretation of each of these measures?

Exercise 4.7 Agresti and Winner (1997) gave the data in Table 4.8 on the ratings of 160 movies
by the reviewers Gene Siskel and Roger Ebert for the period from April 1995 through September
1996. The rating categories were Con (“thumbs down”), Mixed, and Pro (“thumbs up”).

Table 4.8: Movie ratings by Siskel & Ebert, April 1995–September 1996. Source: Agresti and
Winner (1997)

Ebert
Con Mixed Pro Total

Con 24 8 13 45
Siskel Mixed 8 13 11 32

Pro 10 9 64 83
Total 42 30 88 160

(a) Assess the strength of agreement between the raters using Cohen’s κ, both unweighted and
weighted.

(b) Use agreementplot() for a graphical display of agreement here.
(c) Assess the hypothesis that the ratings are symmetric around the main diagonal, using an ap-

propriate χ2 test. Hint: Symmetry for a square table T means that tij = tji for i 6= j. The
expected frequencies under the hypothesis of symmetry are the average of the off-diagonal
cells, E = (T + T T)/2.

(d) Compare the results with the output of mcnemar.test().

Exercise 4.8 For the VisualAcuity data set:

(a) Use the code shown in the text to create the table form, VA.tab.
(b) Perform the CMH tests for this table.
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(c) Use the woolf_test() described in Section 4.3.2 to test whether the association between
left and right eye acuity can be considered the same for men and women.

Exercise 4.9 The graph in Figure 4.23 may be misleading, in that it doesn’t take into account of the
differing capacities of the 18 life boats on the Titanic, given in the variable cap in the Lifeboats
data.

(a) Calculate a new variable, pctloaded, as the percentage loaded relative to the boat capacity.
(b) Produce a plot similar to Figure 4.23, showing the changes over time in this measure.
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Mosaic displays help to visualize the pattern of associations among variables in two-
way and larger tables. Extensions of this technique can reveal partial associations, marginal
associations, and shed light on the structure of loglinear models themselves.

5.1 Introduction

Little boxes on the hillside, little boxes made of ticky tacky,
Little boxes on the hillside, little boxes all the same.
There’s a green one and a pink one, and a blue one and a yellow one,
And they’re all made out of ticky tacky, and they all look just the same.

Words and music by Malvina Reynolds, ©Schroder Music Company 1962, 1990;
recorded by Pete Seeger

In Chapter 4, we described a variety of graphical techniques for visualizing the pattern of asso-
ciation in simple contingency tables. These methods are somewhat specialized for particular sizes
and shapes of tables: 2× 2 tables (fourfold display), R×C tables (tile plot, sieve diagram), square
tables (agreement charts), R× 3 tables (trilinear plots), and so forth.

This chapter describes the mosaic display and related graphical methods for n-way frequency
tables, designed to show various aspects of high-dimensional contingency tables in a hierarchical
way. These methods portray the frequencies in an n-way contingency table by a collection of rect-
angular “tiles” whose size (area) is proportional to the cell frequency. In this respect, the mosaic
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162 5. Mosaic Displays for n-Way Tables

display is similar to the sieve diagram (Section 4.5). However, mosaic plots and related methods
described here:

• generalize more readily to n-way tables. One can usefully examine 3-way, 4-way, and even
larger tables, subject to the limitations of resolution in any graph;

• are intimately connected to loglinear models, generalized linear models, and generalized non-
linear models for frequency data;

• provide a method for fitting a series of sequential loglinear models to the various marginal totals
of an n-way table; and

• can be used to illustrate the relations among variables that are fitted by various loglinear models.

The basic ideas behind these graphical methods are explained for two-way tables in Section 5.2;
the strucplot framework on which these are based is described in Section 5.3. The graphical ex-
tension of mosaic plots to three-way and large tables (Section 5.4) is quite direct. However, the
details require a brief introduction to loglinear models and some terminology for different types of
“independence” in such tables, also described in this section. Mosaic methods are further extended
to all-pairwise plots in Section 5.6 and 3D plots in Section 5.7.

5.2 Two-way tables

The mosaic display (Friendly, 1992, 1994b, 1997, Hartigan and Kleiner, 1981, 1984) is like a
grouped barchart, where the heights (or widths) of the bars show the relative frequencies of one
variable, and widths (heights) of the sections in each bar show the conditional frequencies of the
second variable, given the first. This gives an area-proportional visualization of the frequencies
composed of tiles corresponding to the cells created by successive vertical and horizontal splits of
rectangle, representing the total frequency in the table. The construction of the mosaic display, and
what it reveals, are most easily understood for two-way tables.

EXAMPLE 5.1: Hair color and eye color
Consider the data shown earlier in Table 4.2, showing the relation between hair color and eye

color among students in a statistics course. The basic mosaic display for this 4 × 4 table is shown
in Figure 5.1.

> data("HairEyeColor", package = "datasets")
> haireye <- margin.table(HairEyeColor, 1 : 2)
> mosaic(haireye, labeling = labeling_values)

For such a two-way table, the mosaic in Figure 5.1 is constructed by first dividing a unit square
in proportion to the marginal totals of one variable, say, hair color.

For these data, the marginal frequencies and proportions of hair color are calculated below:

> (hair <- margin.table(haireye, 1))

Hair
Black Brown Red Blond
108 286 71 127

> prop.table(hair)

Hair
Black Brown Red Blond

0.18243 0.48311 0.11993 0.21453
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Figure 5.1: Basic mosaic display for hair color and eye color data. The area of each rectangle is
proportional to the observed frequency in that cell, shown as numbers.

These frequencies can be shown as the mosaic for the first variable (hair color), with the unit
square split according to the marginal proportions as in Figure 5.2 (left). The rectangular tiles are
then shaded to show the residuals (deviations) from a particular model as shown in the right panel
of Figure 5.2. The details of the calculations for shading are:

• The one-way table of marginal totals can be fit to a model, in this case, the (implausible) model
that all hair colors are equally probable. This model has expected frequencies mi = 592/4 =
148:

> expected <- rep(sum(hair) / 4, 4)
> names(expected) <- names(hair)
> expected

Black Brown Red Blond
148 148 148 148

• The Pearson residuals from this model, ri = (ni −mi)/
√
mi, are:

> (residuals <- (hair - expected) / sqrt(expected))

Hair
Black Brown Red Blond

-3.2880 11.3435 -6.3294 -1.7262

and these values are shown by color and shading as shown in the legend in Figure 5.3. The high
positive value for brown hair indicates that people with brown hair are much more frequent in
this sample than the equiprobability model would predict; the large negative residual for red
hair shows that redheads are much less common. Further details of the schemes for shading are
described below, but essentially we use increasing intensities of blue (red) for positive (negative)
residuals.
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Figure 5.2: First step in constructing a mosaic display. Left: splitting the unit square according
to frequencies of hair color; right: shading the tiles according to residuals from a model of equal
marginal probabilities.

In the next step, the rectangle for each hair color is subdivided in proportion to the relative
(conditional) frequencies of the second variable—eye color, giving the following conditional row
proportions:

> round(addmargins(prop.table(haireye, 1), 2), 3)

Eye
Hair Brown Blue Hazel Green Sum
Black 0.630 0.185 0.139 0.046 1.000
Brown 0.416 0.294 0.189 0.101 1.000
Red 0.366 0.239 0.197 0.197 1.000
Blond 0.055 0.740 0.079 0.126 1.000

The proportions in each row determine the width of the tiles in the second mosaic display in
Figure 5.3.

• Again, the cells are shaded in relation to standardized Pearson residuals, rij = (nij−mij)/
√
mij ,

from a model. For a two-way table, the model is that hair color and eye color are independent in
the population from which this sample was drawn. These residuals are calculated as shown be-
low using independence_table() to calculate the expected values mij under this model
(mij = n++πi+π+j):

> exp <- independence_table(haireye)
> resids <- (haireye - exp) / sqrt(exp)
> round(resids, 2)

Eye
Hair Brown Blue Hazel Green

Black 4.40 -3.07 -0.48 -1.95
Brown 1.23 -1.95 1.35 -0.35
Red -0.07 -1.73 0.85 2.28
Blond -5.85 7.05 -2.23 0.61

• Thus, in Figure 5.3, the two tiles shaded deep blue correspond to the two cells, (Black, Brown)
and (Blond, Blue), whose residuals are greater than +4, indicating much greater frequency in
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Figure 5.3: Second step in constructing the mosaic display. Each rectangle for hair color is sub-
divided in proportion to the relative frequencies of eye color, and the tiles are shaded in relation to
residuals from the model of independence.

those cells than would be found if hair color and eye color were independent. The tile shaded
deep red, (Blond, Brown), corresponds to the largest negative residual = −5.85, indicating this
combination is extremely rare under the hypothesis of independence.

• The overall Pearson χ2 statistic for the independence model is just the sum of squares of the
residuals, with degrees of freedom (r − 1)× (c− 1).

> (chisq <- sum(resids ^ 2))

[1] 138.29

> (df <- prod(dim(haireye) - 1))

[1] 9

> pchisq(chisq, df, lower.tail = FALSE)

[1] 2.3253e-25

• These results are of course identical to what chisq.test() provides. Note that the latter can
be used to retrieve the residuals:

> chisq.test(haireye)

Pearson's Chi-squared test

data: haireye
X-squared = 138, df = 9, p-value <2e-16
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> round(residuals(chisq.test(haireye)), 2)

Eye
Hair Brown Blue Hazel Green

Black 4.40 -3.07 -0.48 -1.95
Brown 1.23 -1.95 1.35 -0.35
Red -0.07 -1.73 0.85 2.28
Blond -5.85 7.05 -2.23 0.61

4

5.2.1 Shading levels
A variety of schemes for shading the tiles are available in the strucplot framework (Section 5.3),
but the simplest (and default) shading patterns for the tiles are based on the sign and magnitude of
the standardized Pearson residuals, using shades of blue for positive residuals and red for negative
residuals, and two threshold values for their magnitudes, |rij | > 2 and |rij | > 4.

Because the standardized residuals are approximately unit-normal N(0, 1) values, this corre-
sponds to highlighting cells whose residuals are individually significant at approximately the .05
and .0001 level, respectively. Other shading schemes described later provide tests of significance,
but the main purpose of highlighting cells is to draw attention to the pattern of departures of the
data from the assumed model of independence.

5.2.2 Interpretation and reordering
To interpret the association between hair color and eye color, consider the pattern of positive (blue)
and negative (red) tiles in the mosaic display. We interpret positive values as showing cells whose
observed frequency is substantially greater than would be found under independence; negative val-
ues indicate cells that occur less often than under independence.

The interpretation can often be enhanced by reordering the rows or columns of the two-way
table so that the residuals have an opposite corner pattern of signs. This usually helps us interpret
any systematic patterns of association in terms of the ordering of the row and column categories.

In this example, a more direct interpretation can be achieved by reordering the eye colors as
shown in Figure 5.4. Note that in this rearrangement both hair colors and eye colors are ordered
from dark to light, suggesting an overall interpretation of the association between hair color and eye
color.

> # re-order eye colors from dark to light
> haireye2 <- as.table(haireye[, c("Brown", "Hazel", "Green", "Blue")])
> mosaic(haireye2, shade = TRUE)

In general, the levels of a factor in mosaic displays are often best reordered by arranging them
according to their scores on the first (largest) correspondence analysis dimension (Friendly, 1994b);
see Chapter 6 for details. Friendly and Kwan (2003) use this as one example of effect ordering for
data displays, illustrated in Chapter 1.

Thus, the mosaic in Figure 5.4 shows that the association between hair and eye color is essen-
tially that:

• people with dark hair tend to have dark eyes,
• those with light hair tend to have light eyes,
• people with red hair and green eyes do not quite fit this pattern.
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Figure 5.4: Two-way mosaic for hair color and eye color, reordered. The eye colors were reordered
from dark to light, enhancing the interpretation.

5.3 The strucplot framework

Mosaic displays have much in common with sieve plots and association plots described in Chapter 4
and with related graphical methods such as doubledecker plots described later in this chapter. The
main idea is to visualize a contingency table of frequencies by “tiles” corresponding to the table
cells arranged in rectangular form. For multiway tables with more than two factors, the variables are
nested into rows and columns using recursive conditional splits, given the table margins. The result
is a “flat” representation that can be visualized in ways similar to a two-dimensional representation
of a table. The structable() function described in Section 2.5 gives the tabular version of a
strucplot. The description below follows Meyer et al. (2006), also included as a vignette (accessible
from R as vignette("strucplot", pkg = "vcd")), in vcd.

Rather than implementing each of these methods separately, the strucplot framework in the
vcd package provides a general class of methods of which these are all instances. This framework
defines a class of conditional displays, which allows for granular control of graphical appearance
aspects, including:

• the content of the tiles, e.g., observed or expected frequencies
• the split direction for each dimension, horizontal or vertical
• the graphical parameters of the tiles’ content, e.g., color or other visual attributes
• the spacing between the tiles
• the labeling of the tiles

5.3.1 Components overview

The strucplot framework is highly modularized: Figure 5.5 shows the hierarchical relationship be-
tween the various components. For the most part, you will directly use the convenience and related



168 5. Mosaic Displays for n-Way Tables

Figure 5.5: Components of the strucplot framework. High-level functions use those at lower levels
to provide a general system for tile-based plots of frequency tables.

functions at the top of the diagram, but it is more convenient to describe the framework from the
bottom up.

1. On the lowest level, there are several groups of workhorse and parameter functions that directly
or indirectly influence the final appearance of the plot (see Table 5.1 for an overview). These
are examples of graphical appearance control functions (called grapcon functions). They are
created by generating functions (grapcon generators), allowing flexible parameterization and
extensibility (Figure 5.5 only shows the generators). The generator names follow the naming
convention group_foo(), where group reflects the group the generators belong to (strucplot
core, labeling, legend, shading, or spacing).

• The workhorse functions (created by struc_foo()) are labeling_foo(), and
legend_foo(). These functions directly produce graphical output (i.e., “add ink to
the canvas”), for labels and legends respectively.

• The parameter functions (created by spacing_foo() and shading_foo()) com-
pute graphical parameters used by the others. The grapcon functions returned by
struc_foo() implement the core functionality, creating the tiles and their content.

2. On the second level of the framework, a suitable combination of the low-level grapcon func-
tions (or, alternatively, corresponding generating functions) is passed as “hyperparameters” to
strucplot(). This central function sets up the graphical layout using grid viewports, and
coordinates the specified core, labeling, shading, and spacing functions to produce the plot.

3. On the third level, vcd provides several convenience functions such as mosaic(), sieve(),
assoc(), tile(), and doubledecker()which interface to strucplot() through sen-
sible parameter defaults and support for model formulae.

4. Finally, on the fourth level, there are “related” vcd functions (such as cotabplot() and the
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Table 5.1: Available graphical appearance control (grapcon) generators in the strucplot framework
Group Grapcon generator Description
strucplot struc_assoc() core function for association plots
core struc_mosaic() core function for mosaic plots (also used for tile plots)

struc_sieve() core function for sieve plots
labeling labeling_border() border labels

labeling_cboxed() centered labels with boxes, all labels clipped,
and on top and left border

labeling_cells() cell labels
labeling_conditional() border labels for conditioning variables

and cell labels for conditioned variables
labeling_doubledecker() draws labels for doubledecker plot
labeling_lboxed() left-aligned labels with boxes
labeling_left() left-aligned border labels
labeling_left2() left-aligned border labels, all labels on top and left border
labeling_list() draws a list of labels under the plot
labeling_residuals() show residuals in cells
labeling_value() show values (observed, expected) in cells

shading shading_binary() visualizes the sign of the residuals
shading_Friendly() implements Friendly shading (based on HSV colors)
shading_hcl() shading based on HCL colors
shading_hsv() shading based on HSV colors
shading_max() shading visualizing the maximum test statistic

(based on HCL colors)
shading_sieve() implements Friendly shading customized for sieve plots

(based on HCL colors)
spacing spacing_conditional() increasing spacing for conditioning variables,

equal spacing for conditioned variables
spacing_dimequal() equal spacing for each dimension
spacing_equal() equal spacing for all dimensions
spacing_highlighting() increasing spacing, last dimension set to zero
spacing_increase() increasing spacing

legend legend_fixed() creates a fixed number of bins (similar to mosaicplot())
legend_resbased() suitable for an arbitrary number of bins

(also for continuous shadings)

pairs() methods for table objects) arranging collections of plots of the strucplot framework
into more complex displays (e.g., by means of panel functions).

5.3.2 Shading schemes

Unlike other graphics functions in base R, the strucplot framework allows almost full control over
the graphical parameters of all plot elements. In particular, in association plots, mosaic plots, and
sieve plots, you can modify the graphical appearance of each tile individually.

Built on top of this functionality, the framework supplies a set of shading functions choosing
colors appropriate for the visualization of loglinear models. The tiles’ graphical parameters are set
using the gp argument of the functions of the strucplot framework. This argument basically expects
an object of class "gpar" whose components are arrays of the same shape (length and dimensional-
ity) as the data table.

For added generality, however, you can also supply a grapcon function that computes such
an object given a vector of residuals, or, alternatively, a generating function that takes certain argu-



170 5. Mosaic Displays for n-Way Tables

ments and returns such a grapcon function (see Table 5.1). vcd provides several shading functions,
including support for both HSV (hue-saturation-value) and HCL (hue-chroma-luminance) colors,
and visualization of significance tests.

5.3.2.1 Specifying graphical parameters for strucplot displays

Strucplot displays in vcd are built using the grid graphics package (Murrell, 2011). There are many
graphical parameters that can be set using gp = gpar(...) in a call to a high-level strucplot
function. Among these, the following are often most useful to control the drawing components:

col Color for lines and borders.
fill Color for filling rectangles, polygons, ...
alpha Alpha channel for transparency of fill color.
lty Line type for lines and borders.
lwd Line width for lines and borders.

In addition, a number of parameters control the display of text labels in these displays:

fontsize The size of text (in points)
cex Multiplier applied to fontsize
fontfamily The font family (serif, sans, mono, ...)
fontface The font face (bold, italic, ...)

See help(gpar) for a complete list and help(par) for further details.
We illustrate this capability below using the hair color and eye color data as reordered in Fig-

ure 5.4. The following example produces a Marimekko chart, or a “poor-man’s mosaic display” as
shown in the left panel of Figure 5.6. This is essentially a divided bar chart where the eye colors
within each horizontal bar for the hair color group are all given the same color. In the example, the
matrix fill_colors is constructed to conform to the haireye2 table, using color values that
approximate the eye colors.1

> # color by hair color
> fill_colors <- c("brown4", "#acba72", "green", "lightblue")
> (fill_colors_mat <- t(matrix(rep(fill_colors, 4), ncol = 4)))

[,1] [,2] [,3] [,4]
[1,] "brown4" "#acba72" "green" "lightblue"
[2,] "brown4" "#acba72" "green" "lightblue"
[3,] "brown4" "#acba72" "green" "lightblue"
[4,] "brown4" "#acba72" "green" "lightblue"

> mosaic(haireye2, gp = gpar(fill = fill_colors_mat, col = 0))

Alternatively, we could have used the convenience function shading_Marimekko() in vcd:

> mosaic(haireye2, gp = shading_Marimekko(haireye2))

Note that because the hair colors and eye colors are both ordered, this shows the decreasing preva-
lence of light hair color amongst those with brown eyes and the increasing prevalence of light hair
with blue eyes.

Alternatively, for some purposes,2 we might like to use color to highlight the pattern of diagonal

1Actually, the fill_colors vector could be directly used since values are recycled as needed by mosaic().
2For example, this would be appropriate for a square table, showing agreement between row and column categories, as

in Section 4.7.
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cells, and the off-diagonals 1, 2, 3 steps removed. The R function toeplitz() returns such a
patterned matrix, and we can use this to calculate the fill_colors by indexing the result of
the rainbow_hcl() palette function in colorspace (Ihaka et al., 2015) (generating better colors
than palette()). The code below produces the right panel in Figure 5.6.

> # toeplitz designs
> library(colorspace)
> toeplitz(1 : 4)

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 2 1 2 3
[3,] 3 2 1 2
[4,] 4 3 2 1

> fill_colors <- rainbow_hcl(8)[1 + toeplitz(1 : 4)]
> mosaic(haireye2, gp = gpar(fill = fill_colors, col = 0))
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Figure 5.6: Mosaic displays for the haireye2 data, using custom colors to fill the tiles. Left:
Marimekko chart, using colors to reflect the eye colors; right: Toeplitz-based colors, reflecting the
diagonal strips in a square table.

Again, vcd offers a convenience function for this purposes, shading_diagonal():

> mosaic(haireye2, gp = shading_diagonal(haireye2))

More simply, to shade a mosaic according to the levels of one variable (typically a response
variable), you can use the highlighting arguments of mosaic(). The first call below gives a
result similar to the left panel of Figure 5.6. Alternatively, using the formula method for mosaic(),
specify the response variable as the left-hand side.

> mosaic(haireye2, highlighting = "Eye", highlighting_fill = fill_colors)
> mosaic(Eye ~ Hair, data = haireye2, highlighting_fill = fill_colors)

5.3.2.2 Residual-based shading

The important idea that differentiates mosaic and other strucplot displays from the “poor-man’s,”
Marimekko versions (Figure 5.6) often shown in other software, is that rather than just using shading
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color to identify the cells, we can use these attributes to show something more—residuals from some
model, whose pattern helps to explain the association between the table variables.

As described above, the strucplot framework includes a variety of shading_ functions, and
these can be customized with optional arguments. Zeileis et al. (2007) describe a general approach
to residual-based shadings for area-proportional visualizations, used in the development of the struc-
plot framework in vcd.

EXAMPLE 5.2: Interpolation options
One simple thing to do is to modify the interpolate option passed to the default shading_hcl

function, as shown in Figure 5.7.

> # more shading levels
> mosaic(haireye2, shade = TRUE, gp_args = list(interpolate = 1 : 4))
>
> # continuous shading
> interp <- function(x) pmin(x / 6, 1)
> mosaic(haireye2, shade = TRUE, gp_args = list(interpolate = interp))
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Figure 5.7: Interpolation options for shading levels in mosaic displays. Left: four shading levels;
right: continuous shading.

For the left panel of Figure 5.7, a numeric vector is passed as interpolate=1:4, defining
the boundaries of a step function mapping the absolute values of residuals to saturation levels in the
HCL color scheme. For the right panel, a user-defined function, interp(), is created which maps
the absolute residuals to saturation values in a continuous way (up to a maximum of 6).

Note that these two interpolation schemes produce quite similar results, differing mainly in the
shading level of residuals within±1 and in the legend. In practice, the default discrete interpolation,
using cutoffs of ±2,±4 usually works quite well. 4

EXAMPLE 5.3: Shading functions
Alternatively, the names of shading functions can be passed as the gp argument, as shown below,

producing Figure 5.8. Two shading function are illustrated here:

• The left panel of Figure 5.8 uses the classical Friendly (1994b) shading scheme, shading_Friendly
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with HSV colors3 of blue and red and default cutoffs for absolute residuals, ±2,±4, corre-
sponding to interpolate = c(2, 4). In this shading scheme, all tiles use an outline
color (col) corresponding to the sign of the residual. As well, the border line type (lty) dis-
tinguishes positive and negative residuals, which is useful if a mosaic plot is printed in black
and white.

• The right panel uses the shading_max() function, based on the ideas of Zeileis et al. (2007)
on residual-based shadings for area-proportional visualizations. Instead of using the cutoffs 2
and 4, it employs the critical values, Mα, for the maximum absolute Pearson residual statistic,

M = max
i,j
|rij | ,

by default at α = 0.10 and 0.01.4 Only those residuals with |rij | > Mα are colored in the
plot, using two levels for Value (“lightness”) in HSV color space. Consequently, all color in
the plot signals a significant departure from independence at 90% or 99% significance level,
respectively.5

> mosaic(haireye2, gp = shading_Friendly, legend = legend_fixed)
> set.seed(1234)
> mosaic(haireye2, gp = shading_max)
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Figure 5.8: Shading functions for mosaic displays. Left: shading_Friendly using fixed cut-
offs and the “Friendly” color scheme and an alternative legend style (legend_fixed); right:
shading_max, using a permutation-based test to determine significance of residuals.

In this example, the difference between these two shading schemes is largely cosmetic, in that
the pattern of association is similar in the two panels of Figure 5.8, and the interpretation would be
the same. This is not always the case, as we will see in the next example. 4

3shading_Friendly2() is a variant based on HCL colors.
4These default significance levels were chosen because this leads to displays where fully colored cells are clearly signif-

icant (p < 0.01), cells without color are clearly non-significant (p > 0.1), and cells in between can be considered to be
weakly significant (0.01 ≤ p ≤ 0.1).

5This computation uses the vcd function coindep_test() to calculate generalized tests of (conditional) indepen-
dence by simulation from the marginal distribution of the input table under (conditional) independence. In these examples
using shading_max, the function set.seed() is used to initialize the random number generators to a given state for
reproducibility.
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EXAMPLE 5.4: Arthritis treatment
This example uses the Arthritis data, illustrated earlier (Example 2.2), on the relation be-

tween treatment and outcome for rheumatoid arthritis. To confine this example to a two-way table,
we use only the (larger) female patient group.

> art <- xtabs(~ Treatment + Improved, data = Arthritis,
+ subset = Sex == "Female")
> names(dimnames(art))[2] <- "Improvement"

The calls to mosaic() below compare shading_Friendly and shading_max, giving
the plots shown in Figure 5.9.

> mosaic(art, gp = shading_Friendly, margin = c(right = 1),
+ labeling = labeling_residuals, suppress = 0, digits = 2)
> set.seed(1234)
> mosaic(art, gp = shading_max, margin = c(right = 1))
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Figure 5.9: Mosaic plots for the female patients in the Arthritis data. Left: Fixed shading levels
via shading_Friendly; right: shading levels determined by significant maximum residuals via
shading_max.

This data set is somewhat paradoxical, in that the standard chisq.test() for association
with these data gives a highly significant result, χ2(2) = 11.3, p = 0.0035, while the shading
pattern using shading_Friendly in the left panel of Figure 5.9 shows all residuals within ±2,
and thus unshaded.

On the other hand, the shading_max shading in the right panel of Figure 5.9 shows that
significant deviations from independence occur in the four corner cells, corresponding to more
of the treated group showing marked improvement, and more of the placebo group showing no
improvement.

Some details behind the shading_max method are shown below. The Pearson residuals for
this table are calculated as:

> residuals(chisq.test(art))

Improvement
Treatment None Some Marked
Placebo 1.47752 0.19267 -1.71734
Treated -1.60852 -0.20975 1.86960
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The shading_max() function then calls coindep_test(art) to generate n = 1000
random tables with the same margins, and computes the maximum residual statistic for each. This
gives a non-parametric p-value for the test of independence, p = 0.011 shown in the legend.

> set.seed(1243)
> art_max <- coindep_test(art)
> art_max

Permutation test for conditional independence

data: art
f(x) = 1.87, p-value = 0.011

Finally, the 0.90 and 0.99 quantiles of the simulation distribution are used as shading levels,
passed as the value of the interpolate argument.

> art_max$qdist(c(0.90, 0.99))

90% 99%
1.2393 1.9167

4

The converse situation can also arise in practice. An overall test for association using Pearson’s
χ2 may not be significant, but the maximum residual test may highlight one or more cells worthy of
greater attention, as illustrated in the following example.

EXAMPLE 5.5: UK soccer scores
In Example 3.9, we examined the distribution of goals scored by the home team and the away

team in 380 games in the 1995/96 season by the 20 teams in the UK Football Association, Pre-
mier League. The analysis there focused on the distribution of the total goals scored, under the
assumption that the number of goals scored by the home team and the away team were independent.

Here, the rows and columns of the table UKSoccer are both ordered, so it is convenient and
compact to carry out all the CMH tests taking ordinality into account.

> data("UKSoccer", package = "vcd")
> CMHtest(UKSoccer)

Cochran-Mantel-Haenszel Statistics for Home by Away

AltHypothesis Chisq Df Prob
cor Nonzero correlation 1.01 1 0.315
rmeans Row mean scores differ 5.63 4 0.229
cmeans Col mean scores differ 7.42 4 0.115
general General association 18.65 16 0.287

All of these are non-significant, so that might well be the end of the story, as far as indepen-
dence of goals in home and away games is concerned. Yet, one residual, r42 = 3.08 stands out,
corresponding to 4 or more goals by the home team and only 2 goals by the away team, which
accounts for nearly half of the χ2(16) = 18.7 for general association. The mosaic plot is shown in
Figure 5.10.

> set.seed(1234)
> mosaic(UKSoccer, gp = shading_max, labeling = labeling_residuals,
+ digits = 2)

This occurrence may or may not turn out to have some explanation, but at least the mosaic plot
draws it to our attention, and is consistent with the (significant) result from coindep_test().

4
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Figure 5.10: Mosaic display for UK soccer scores, highlighting one cell that stands out for further
attention.

5.4 Three-way and larger tables

The mosaic displays and other graphical methods within the strucplot framework extend quite nat-
urally to three-way and higher-way tables. The essential idea is that for the variables in a multiway
table in a given order, each successive variable is used to subdivide the tile(s) in proportion to the rel-
ative (conditional) frequencies of that variable, given all previous variables. This process continues
recursively until all table variables have been included.

For simplicity, we continue with the running example of hair color and eye color. Imagine that
each cell of the two-way table for hair and eye color is further classified by one or more additional
variables—sex and level of education, for example. Then each rectangle can be subdivided hor-
izontally to show the proportion of males and females in that cell, and each of those horizontal
portions can be subdivided vertically to show the proportions of people at each educational level in
the hair–eye–sex group.

EXAMPLE 5.6: Hair color, eye color, and sex
Figure 5.11 shows the mosaic for the three-way table, with hair and eye color groups divided

according to the proportions of males and females. As explained in the next section (Section 5.4.2)
there are now different models for “independence” we could investigate, not just the (mutual) inde-
pendence of all factors. Here, for example, we could examine whether the additional variable (Sex)
is independent from the joint relationship between Hair and Eye.

> HEC <- HairEyeColor[, c("Brown", "Hazel", "Green", "Blue"),]
> mosaic(HEC, rot_labels = c(right = -45))

In Figure 5.11 it is easy to see that there is no systematic association between sex and the
combinations of hair and eye color—the proportion of male/female students is roughly the same in
almost all hair/eye color groups. Yet, among blue-eyed blonds, there seems to be an overabundance
of females, and the proportion of blue-eyed males with brown hair also looks suspicious. 4
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Figure 5.11: Three-way mosaic for hair color, eye color, and sex.

These and other hypotheses are best tested within the framework of loglinear models, allowing you
to flexibly specify various independence models for any number of variables, and analyze them
similarily to classical ANOVA models. This general topic is discussed in detail in Chapter 9. For
the present purposes, we give a short introduction in the following section.

5.4.1 A primer on loglinear models

The essential idea behind loglinear models is that the multiplicative relationships among expected
frequencies under independence (shown as areas in sieve diagrams and mosaic plots) become ad-
ditive models when expressed as models for log frequency, and we briefly explain this connection
here for two-way tables.

To see this, consider two discrete variables, A and B, with nij observations in each cell i, j
of an R × C contingency table, and use ni+ = Σjnij and n+j = Σinij for the row and column
marginal totals, respectively. The total frequency is n++ = Σijnij . Analogously, we use mij for
the expected frequency under any model and also use a subscript + to represent summation over
that dimension.

Then, the hypothesis of independence means that the expected frequencies, mij , obey

mij =
mi+ m+j

m++
.

This multiplicative model can be transformed to an additive (linear) model by taking logarithms of
both sides:

log(mij) = log(mi+) + log(m+j)− log(m++) .
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This is usually re-expressed in an equivalent form in terms of model parameters µ, λAi and λBj

log(mij) = µ+ λAi + λBj ≡ [A][B] . (5.1)

Model Eqn. (5.1) asserts that the row and column variables are independent because there is no term
that depends on both A and B.

In contrast, a model for a two-way table that allows an arbitrary association between the vari-
ables is the saturated model, including an additional term, λABij :

log(mij) = µ+ λAi + λBj + λABij ≡ [AB] . (5.2)

Except for the difference in notation, model Eqn. (5.2) is formally the same as a two-factor
ANOVA model with an interaction, typically expressed asE(yij) = µ+αi+βj+(αβ)ij . Hence, as-
sociations between variables in loglinear models are analogous to interactions in ANOVA models.6

In contrast to ANOVA, the “main effects,” λAi and λBj , are rarely of interest—a typical log-linear
analysis focuses only on the interaction (association) terms.

Models such as Eqn. (5.1) and Eqn. (5.2) are examples of hierarchical models. This means that
the model must contain all lower-order terms contained within any high-order term in the model.

Thus, the saturated model, Eqn. (5.2) contains λABij , and therefore must contain λAi and λBj . As a
result, hierarchical models may be identified by the shorthand notation that lists only the high-order
terms: model Eqn. (5.2) is denoted [AB], while model Eqn. (5.1) is [A][B].

In R, the most basic function for fitting loglinear models is loglin() in the stats package.
It is designed to work with the frequency data in table form, and a model specified in terms of the
(high-order) table margins to be fitted. For example, the independence model Eqn. (5.1) is specified
as

> loglin(mytable, margin = list(1, 2))

meaning that variables 1 and 2 are independent, whereas the saturated model Eqn. (5.2) would be
specified as

> loglin(mytable, margin = list(c(1, 2)))

The function loglm() in MASS provides a more convenient front-end to loglin() to al-
low loglinear models to be specified using a model formula. With table variables A and B, the
independence model can be fit using loglm() as

> loglm(~ A + B, data = mytable)

and the saturated model in either of the following equivalent forms:

> loglm(~ A + B + A : B, data = mytable)
> loglm(~ A * B, data = mytable)

In such model formulas, A:B indicates an interaction term λABij , while A*B is expanded to also
include the terms A + B.

EXAMPLE 5.7: Hair color, eye color, and sex
Getting back to our running example of hair and eye color, we start casting the classical test of

independence used in Section 5.2 as log-linear model analysis. Using the haireye two-way table,
the independence of Hair and Eye is equivalent to the model [Hair][Eye] and formulated in R
using loglm() as:

6The use of superscripted symbols, λAi , λ
B
j , λ

AB
ij , rather than separate Greek letters is a convention in loglinear models,

and useful mainly for multiway tables.
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> loglm(~ Hair + Eye, data = haireye)

Call:
loglm(formula = ~Hair + Eye, data = haireye)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 146.44 9 0
Pearson 138.29 9 0

The output includes both the χ2 and the deviance test statistics, both significant, indicating
strong lack of fit. We now extend the analysis by including Sex, i.e., use the full HairEyeColor
data set. In the section’s introductory example, this was visualized using a mosaic plot, leading to
the hypothesis whether Hair and Eye were jointly independent of Sex. To test this formally, we
fit the corresponding model [HairEye][Sex] to the data:

> HE_S <- loglm(~ Hair * Eye + Sex, data = HairEyeColor)
> HE_S

Call:
loglm(formula = ~Hair * Eye + Sex, data = HairEyeColor)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 19.857 15 0.17750
Pearson 19.567 15 0.18917

giving a non-significant Pearson χ2(15) = 19.567, p = 0.189. The residuals from this model could
be retrieved using

> residuals(HE_S, type = "pearson")

for further inspection. Mosaic plots can conveniently be used for this purpose, either by specify-
ing the residuals with the residuals= argument, or by providing the loglm model formula as
the expected= argument, letting mosaic() calculate them by calling loglm(). In the call to
mosaic() below, the model of joint independence is specified as expected = ~ Hair * Eye
+ Sex, giving Figure 5.12. The strucplot labeling function labeling_residuals is used to
display the residuals in the highlighted cells.

> HEC <- HairEyeColor[, c("Brown", "Hazel", "Green", "Blue"),]
> mosaic(HEC, expected = ~ Hair * Eye + Sex,
+ labeling = labeling_residuals,
+ digits = 2, rot_labels = c(right = -45))

Although non-significant, the two largest residuals highlighted in the plot account for nearly half
(−2.152 + 2.032 = 8.74) of the lack of fit, and so are worthy of attention here. An easy (probably
facile) interpretation is that among the blue-eyed blonds, some of the females benefited from hair
products. 4

5.4.2 Fitting models
When three or more variables are represented in a table, we can fit several different models of
types of “independence” and display the residuals from each model. We treat these models as
null or baseline models, which may not fit the data particularly well. The deviations of observed
frequencies from expected ones, displayed by shading, will often suggest terms to be added to an
explanatory model that achieves a better fit.



180 5. Mosaic Displays for n-Way Tables

−2.1
−2.0

 0.0

 2.0

Pearson
residuals:

p−value =
0.189

Eye

H
ai

r

S
ex

Bl
on

d

Female

Male

R
ed Female

Male

Br
ow

n

Female

Male

Bl
ac

k

Brown HazelGreen Blue

Female

Male

−2.15

2.03

Figure 5.12: Three-way mosaic for hair color, eye color, and sex. Residuals from the model of joint
independence, [HE][S] are shown by shading.

For a three-way table, with variables A, B and C, some of the hypothesized models that can
be fit are described below and summarized in Table 5.2. Here we use [•] notation to list the high-
order terms in a hierarchical loglinear model; these correspond to the margins of the table that are
fitted exactly, and which translate directly into R formulas used in loglm() and mosaic(...,
expected=).

The notation [AB][AC], for example, is shorthand for the model loglm(~ A*B + A*C) that
implies

log(mijk) = µ+ λAi + λBj + λCk + λABij + λACik , (5.3)

and reproduces the {AB} and {AC} marginal subtables.7 That is, the calculated expected frequen-
cies in these margins are always equal to the corresponding observed frequencies, mij+ = nij+
and mi+k = ni+k.

In this table, A ⊥ B is read, “A is independent of B.” The independence interpretation of the
model Eqn. (5.3) isB ⊥ C |A, which can be read as “B is independent of C, given (conditional on)
A.” Table 5.2 also depicts the relations among variables as an association graph, where associated
variables are connected by an edge and variables that are asserted to be independent are uncon-
nected. In mosaic-like displays, other associations present in the data will appear in the pattern of
residuals.

For a three-way table, there are four general classes of independence models illustrated in Ta-
ble 5.2, as described below.8 Not included here is the saturated model, [ABC], which fits the
observed data exactly.

7The notation here uses curly braces, {•} to indicate a marginal subtable summed over all other variables.
8For H2 and H3, permutation of the variables A, B, and C gives other members of each class.
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Table 5.2: Fitted margins, model symbols, and interpretations for some hypotheses for a three-way
table

Hypothesis
Fitted

margins
Model
symbol

Independence
interpretation

Association
graph

H1 ni++, n+j+, n++k [A][B][C] A ⊥ B ⊥ C A B

C

H2 nij+, n++k [AB][C] (A,B) ⊥ C A B

C

H3 ni+k, n+jk [AC][BC] A ⊥ B | C A B

C

H4 nij+, ni+k, n+jk [AB][AC][BC] NA
A B

C

H1: Complete independence. The model of complete (mutual) independence, symbolized A ⊥
B ⊥ C, with model formula ~ A + B + C, asserts that all joint probabilities are products of
the one-way marginal probabilities:

πijk = πi++ π+j+ π++k ,

for all i, j, k in a three-way table. This corresponds to the log-linear model [A][B][C]. Fit-
ting this model puts all higher terms, and hence all association among the variables, into the
residuals.

H2: Joint independence. Another possibility is to fit the model in which variable C is jointly
independent of variables A and B, ({A,B} ⊥ C), with model formula ~ A*B + C, where

πijk = πij+ π++k .

This corresponds to the loglinear model [AB][C]. Residuals from this model show the extent to
which variable C is related to the combinations of variables A and B but they do not show any
association between A and B, since that association is fitted exactly. For this model, variable
C is also independent of A and B in the marginal {AC} table (collapsing over B) and in the
marginal {BC}.

H3: Conditional independence. Two variables, say A and B, are conditionally independent given
the third (C) if A and B are independent when we control for C, symbolized as A ⊥ B |C, and
model formula ~ A*C + B*C (or ~ (A + B) * C). This means that conditional proba-
bilities, πij|k obey

πij|k = πi+|k π+j|k ,
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where πij|k = πijk/πij+, πi+|k = πi+k/πi++, and π+j|k = π+jk/π+j+. The corresponding
loglinear models is denoted [AC][BC]. When this model is fit, the mosaic display shows the
conditional associations between variables A and B, controlling for C, but does not show the
associations between A and C, or B and C.

H4: No three-way interaction. For this model, no pair is marginally or conditionally independent,
so there is no independence interpretation. Nor is there a closed-form expression for the cell
probabilities. However, the association between any two variables is the same at each level of
the third variable. The corresponding loglinear model formula is [AB][AC][BC], indicating that
all two-way margins are fit exactly and so only the three-way association is shown in the mosaic
residuals.

EXAMPLE 5.8: Hair color, eye color, and sex
We continue with the analysis of the HairEyeColor data from Example 5.6 and Example 5.7.

Figure 5.12 showed the fit of the joint-independence model [HairEye][Sex], testing whether the joint
distribution of hair color and eye color is associated with sex.

Any other model fit to this table will have the same size tiles in the mosaic since the areas depend
on the observed frequencies; the residuals, and hence the shading of the tiles will differ. Figure 5.13
shows mosaics for two other models. Shading in the left panel shows residuals from the model
of mutual independence, [Hair][Eye][Sex], and so includes all sources of association among these
three variables. The right panel shows the conditional independence model, [HairSex][EyeSex],
testing whether hair color and eye color are independent, given sex. Note that the pattern of residuals
here is similar to that in the two-way display, Figure 5.4, that collapsed over sex.

> abbrev <- list(abbreviate = c(FALSE, FALSE, 1))
> mosaic(HEC, expected = ~ Hair + Eye + Sex, labeling_args = abbrev,
+ main = "Model: ~ Hair + Eye + Sex")
> mosaic(HEC, expected = ~ Hair * Sex + Eye * Sex, labeling_args = abbrev,
+ main="Model: ~ Hair*Sex + Eye*Sex")
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Figure 5.13: Mosaic displays for other models fit to the data on hair color, eye color, and sex. Left:
Mutual independence model; right: Conditional independence of hair color and eye color given sex.

Compared with Figure 5.12 for the joint independence model, [HairEye][Sex], it is easy to see that
both of these models fit very poorly.
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We consider loglinear models in more detail in Chapter 9, but for now note that these models
are fit using loglm() in the MASS package, with the model formula given in the expected
argument. The details of these models can be seen by fitting these models explicitly, and the fit of
several models can be summarized compactly using LRstats() in vcdExtra.

> library(MASS)
> # three types of independence:
> mod1 <- loglm(~ Hair + Eye + Sex, data = HEC) # mutual
> mod2 <- loglm(~ Hair * Sex + Eye * Sex, data = HEC) # conditional
> mod3 <- loglm(~ Hair * Eye + Sex, data = HEC) # joint
> LRstats(mod1, mod2, mod3)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

mod1 321 333 166.3 24 <2e-16 ***
mod2 324 344 156.7 18 <2e-16 ***
mod3 193 218 19.9 15 0.18
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Alternatively, you can get the Pearson and likelihood ratio (LR) tests for a given model using
anova(), or compare a set of models using LR tests on the difference in LR χ2 from one model
to the next, when a list of models is supplied to anova().

> anova(mod1)

Call:
loglm(formula = ~Hair + Eye + Sex, data = HEC)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 166.30 24 0
Pearson 164.92 24 0

> anova(mod1, mod2, mod3, test = "chisq")

LR tests for hierarchical log-linear models

Model 1:
~Hair + Eye + Sex
Model 2:
~Hair * Sex + Eye * Sex
Model 3:
~Hair * Eye + Sex

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 166.300 24
Model 2 156.678 18 9.6222 6 0.14149
Model 3 19.857 15 136.8213 3 0.00000
Saturated 0.000 0 19.8566 15 0.17750

4

5.5 Model and plot collections

This section describes a few special circumstances in which a collection of mosaic plots and related
loglinear models can be used in a complementary fashion to understand the nature of associations
in three-way and larger tables.
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5.5.1 Sequential plots and models
As described in Section 5.2, we can think of the mosaic display for an n-way table as being con-
structed in stages, with the variables listed in a given order, and the unit tile decomposed recursively
as each variable is entered in turn. This process turns out to have the useful property that it provides
an additive (hierarchical) decomposition of the total association in a table, in a way analogous to
sequential fitting with Type I sum of squares in regression models.

Typically, we just view the mosaic and fit models to the full n-way table, but it is useful to
understand the connection with models for the marginal subtables, defined by summing over all
variables not yet entered. For example, for a three-way table with variables A,B,C, the marginal
subtables {A} and {AB} are calculated in the process of constructing the three-way mosaic. The
{A} marginal table can be fit to a model where the categories of variable A are equiprobable as
shown in Figure 5.2 (or some other discrete distribution); the independence model can be fit to the
{AB} subtable as in Figure 5.2, and so forth.

This connection can be seen in the following formula that decomposes the joint cell probability
in an n-way table with variables v1, v2, . . . vn as a sequential product of conditional probabilities,

pijk`··· =

{v1v2}︷ ︸︸ ︷
pi × pj|i× pk|ij︸ ︷︷ ︸

{v1v2v3}

× p`|ijk × · · · × pn|ijk··· (5.4)

In Eqn. (5.4), the first term corresponds to the one-way mosaic for v1, the first two terms to the
mosaic for v1 and v2, the first three terms to the mosaic for v1, v2, and v2, and so forth.

It can be shown (Friendly, 1994b) that this sequential product of probabilities corresponds to
a set of sequential models of joint independence, whose likelihood ratio G2 statistics provide an
additive decomposition of the total association, G2

[v1][v2]...[vn]
for the mutual independence model

in the full table:

G2
[v1][v2]...[vn]

= G2
[v1][v2]

+G2
[v1v2][v3]

+G2
[v1v2v3][v4]

+ · · ·+G2
[v1...vn−1][vn]

. (5.5)

For example, for the hair-eye data, the mosaic displays for the [Hair] [Eye] marginal table (Fig-
ure 5.4) and the [HairEye] [Sex] table (Figure 5.12) can be viewed as representing the partition of
G2 shown as a table below:

Model Model symbol df G2

Marginal [Hair] [Eye] 9 146.44
Joint [Hair, Eye] [Sex] 15 19.86
Mutual [Hair] [Eye] [Sex] 24 166.30

The decomposition in this table reflecting Eqn. (5.5) is shown as a visual equation in Figure 5.14.
You can see from the shading how the two sequential submodels contribute to overall association in
the model of mutual independence.

Although sequential models of joint independence have the nice additive property illustrated
above, other classes of sequential models are possible, and sometimes of substantive interest. The
main types of these models are illustrated in Table 5.3 for 3-, 4-, and 5-way tables, with variables
A, B, ..., E. In all cases, the natural model for the one-way margin is the equiprobability model, and
that for the two-way margin is [A][B].

The vcdExtra package provides a collection of convenience functions that generate the loglinear
model formulae symbolically, as indicated in the function column. The functions mutual(),
joint(), conditional(), markov() and so forth simply generate a list of terms suitable for
a model formula for loglin(). See help(loglin-utilities) for further details.

Wrapper functions loglin2string() and loglin2formula() convert these to charac-
ter strings or model formulae, respectively, for use with loglm() and mosaic()-related func-
tions in vcdExtra. Some examples are shown below.
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Figure 5.14: Visual representation of the decomposition of the G2 for mutual independence (total)
as the sum of marginal and joint independence.

Table 5.3: Classes of sequential models for n-way tables

function 3-way 4-way 5-way
mutual [A] [B] [C] [A] [B] [C] [D] [A] [B] [C] [D] [E]
joint [AB] [C] [ABC] [D] [ABCE] [E]
joint (with=1) [A] [BC] [A] [BCD] [A] [BCDE]
conditional [AC] [BC] [AD] [BD] [CD] [AE] [BE] [CE] [DE]
conditional (with=1) [AB] [AC] [AB] [AC] [AD] [AB] [AC] [AD] [AE]
markov (order=1) [AB] [BC] [AB] [BC] [CD] [AB] [BC] [CD] [DE]
markov (order=2) [A] [B] [C] [ABC] [BCD] [ABC] [BCD] [CDE]
saturated [ABC] [ABCD] [ABCDE]

> for(nf in 2 : 5) {
+ print(loglin2string(joint(nf, factors = LETTERS[1:5])))
+ }

[1] "[A] [B]"
[1] "[A,B] [C]"
[1] "[A,B,C] [D]"
[1] "[A,B,C,D] [E]"

> for(nf in 2 : 5) {
+ print(loglin2string(conditional(nf, factors = LETTERS[1:5]),
+ sep = ""))
+ }

[1] "[A] [B]"
[1] "[AC] [BC]"
[1] "[AD] [BD] [CD]"
[1] "[AE] [BE] [CE] [DE]"

> for(nf in 2 : 5) {
+ print(loglin2formula(conditional(nf, factors = LETTERS[1:5])))
+ }

~A + B
~A:C + B:C
~A:D + B:D + C:D
~A:E + B:E + C:E + D:E
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Applied to data, these functions take a table argument, and deliver the string or formula
representation of a type of model for that table:

> loglin2formula(joint(3, table = HEC))

~Hair:Eye + Sex

> loglin2string(joint(3, table = HEC))

[1] "[Hair,Eye] [Sex]"

Their main use, however, is within higher-level functions, such as seq_loglm(), which fit
the collection of sequential models of a given type.

> HEC.mods <- seq_loglm(HEC, type = "joint")
> LRstats(HEC.mods)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

model.1 194 194 165.6 3 <2e-16 ***
model.2 241 246 146.4 9 <2e-16 ***
model.3 193 218 19.9 15 0.18
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this section we have described a variety of models that can be fit to higher-way tables, some
relations among those models, and the aspects of lack of fit that are revealed in the mosaic displays.
The following discussion illustrates the process of model fitting, using the mosaic as an interpretive
guide to the nature of associations among the variables. In general, we start with a minimal baseline
model.9 The pattern of residuals in the mosaic will suggest associations to be added to an adequate
explanatory model. As the model achieves better fit to the data, the degree of shading decreases, so
we may think of the process of model fitting as “cleaning the mosaic.”

5.5.2 Causal models

The sequence of models of joint independence has another interpretation when the ordering of the
variables is based on a set of ordered hypotheses involving causal relationships among variables
(Goodman, 1973, Fienberg, 1980, Section 7.2). Suppose, for example, that the causal ordering of
four variables is A→ B → C → D, where the arrow means “is antecedent to.” Goodman suggests
that the conditional joint probabilities of B, C, and D given A can be characterized by a set of
recursive logit models that treat (a) B as a response to A, (b) C as a response to A and B jointly,
and (c) D as a response to A, B and C.

These are equivalent to the loglinear models that we fit as the sequential baseline models of joint
independence, namely [A][B], [AB][C], and [ABC][D]. The combination of these models with the
marginal probabilities of A gives a characterization of the joint probabilities of all four variables,
as in Eqn. (5.4). In application, residuals from each submodel show the associations that remain
unexplained.

EXAMPLE 5.9: Marital status and pre- and extramarital sex
A study of divorce patterns in relation to premarital and extramarital sex by Thornes and Collard

(1979) reported the 24 table shown below, and included in vcd as PreSex.

9When one variable, R, is a response, this normally is the model of joint independence, [E1E2 . . .] [R], where
E1, E2, . . . are the explanatory variables. Better-fitting models will often include associations of the form [EiR],
[Ei Ej R] . . ..
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> data("PreSex", package = "vcd")
> structable(Gender + PremaritalSex + ExtramaritalSex ~ MaritalStatus,
+ data = PreSex)

Gender Women Men
PremaritalSex Yes No Yes No
ExtramaritalSex Yes No Yes No Yes No Yes No

MaritalStatus
Divorced 17 54 36 214 28 60 17 68
Married 4 25 4 322 11 42 4 130

These data were analyzed by Agresti (2013, Section 6.1.7) and by Friendly (1994b, 2000), from
which this account draws. A sample of about 500 people who had petitioned for divorce, and a
similar number of married people, were asked two questions regarding their pre- and extramarital
sexual experience: (1) “Before you married your (former) husband/wife, had you ever made love
with anyone else?,” (2) “During your (former) marriage (did you) have you had any affairs or brief
sexual encounters with another man/woman?” The table variables are thus gender (G), reported
premarital (P ) and extramarital (E) sex, and current marital status (M ).

In this analysis we consider the variables in the orderG, P , E, andM , and first reorder the table
variables for convenience.

> PreSex <- aperm(PreSex, 4 : 1) # order variables G, P, E, M

That is, the first stage treats P as a response to G and examines the [Gender][Pre] mosaic to
assess whether gender has an effect on premarital sex. The second stage treats E as a response to
G and P jointly; the mosaic for [Gender, Pre] [Extra] shows whether extramarital sex is related to
either gender or premarital sex. These are shown in Figure 5.15.

> # (Gender Pre)
> mosaic(margin.table(PreSex, 1 : 2), shade = TRUE,
+ main = "Gender and Premarital Sex")
>
> ## (Gender Pre)(Extra)
> mosaic(margin.table(PreSex, 1 : 3),
+ expected = ~ Gender * PremaritalSex + ExtramaritalSex,
+ main = "Gender*Pre + ExtramaritalSex")

Finally, the mosaic for [Gender, Pre, Extra] [Marital] is examined for evidence of the depen-
dence of marital status on the three previous variables jointly. As noted above, these models are
equivalent to the recursive logit models whose path diagram is G → P → E → M .10 The G2

values for these models shown below provide a decomposition of the G2 for the model of complete
independence fit to the full table.

Model df G2

[G] [P] 1 75.259
[GP] [E] 3 48.929

[GPE] [M] 7 107.956
[G] [P] [E] [M] 11 232.142

The [Gender] [Pre] mosaic in the left panel of Figure 5.15 shows that men are much more likely
to report premarital sex than are women; the sample odds ratio is 3.7. We also see that women are
about twice as prevalent as men in this sample. The mosaic for the model of joint independence,
[Gender Pre] [Extra] in the right panel of Figure 5.15, shows that extramarital sex depends on gender

10Agresti (2013, Figure 6.1) considers a slightly more complex, but more realistic model in which premarital sex affects
both the propensity to have extramarital sex and subsequent marital status.
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Figure 5.15: Mosaic displays for the first two marginal tables in the PreSex data. Left: Gender and
premarital sex; right: fitting the model of joint independence with extramarital sex, [GP][E].

and premarital sex jointly. From the pattern of residuals in Figure 5.15 we see that men and women
who have reported premarital sex are far more likely to report extramarital sex than those who have
not. In this three-way marginal table, the conditional odds ratio of extramarital sex given premarital
sex is nearly the same for both genders (3.61 for men and 3.56 for women). Thus, extramarital sex
depends on premarital sex, but not on gender.

> loddsratio(margin.table(PreSex, 1 : 3), stratum = 1, log = FALSE)

odds ratios for Gender and PremaritalSex by ExtramaritalSex

Yes No
0.28269 0.28611

Four-way mosaic plots for two models are shown in Figure 5.16.

> ## (Gender Pre Extra)(Marital)
> mosaic(PreSex,
+ expected = ~ Gender * PremaritalSex * ExtramaritalSex
+ + MaritalStatus,
+ main = "Gender*Pre*Extra + MaritalStatus")
> ## (GPE)(PEM)
> mosaic(PreSex,
+ expected = ~ Gender * PremaritalSex * ExtramaritalSex
+ + MaritalStatus * PremaritalSex * ExtramaritalSex,
+ main = "G*P*E + P*E*M")

4

5.5.3 Partial association
In a three-way (or larger) table it may be that two variables, say A and B, are associated at some
levels of the third variable, C, but not at other levels of C. More generally, we may wish to explore
whether and how the association among two (or more) variables in a contingency table varies over
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Figure 5.16: Four-way mosaics for the PreSex data. The left panel fits the model [GPE][M]. The
pattern of residuals suggests other associations with marital status. The right panel fits the model
[GPE][PEM].

the levels of the remaining variables. The term partial association refers to the association among
some variables within the levels of the other variables.

Partial association represents a useful “divide and conquer” statistical strategy: it allows you to
refine the question you want to answer for complex relations by breaking it down to smaller, easier
questions.11 It is a statistically happy fact that an answer to the larger, more complex question can
be expressed as an algebraic sum of the answers to the smaller questions, just as was the case with
sequential models of joint independence.

For concreteness, consider the case where you want to understand the relationship between
attitude toward corporal punishment of children by parents or teachers (Never, Moderate use OK)
and memory that the respondent had experienced corporal punishment as a child (Yes, No). But you
also have measured other variables on the respondents, including their level of education and age
category. In this case, the question of association among all the table variables may be complex, but
we can answer a highly relevant, specialized question precisely, “Is there an association between
attitude and memory, controlling for education and age?” The answer to this question can be
thought of as the sum of the answers to the simpler question of association between attitude and
memory across all combinations of the education and age categories.

A simpler version of this idea is considered first below (Example 5.10): among workers who
were laid off due to either the closure of a plant or business vs. replacement by another worker,
the (conditional) relationship of employment status (new job vs. still unemployed) and duration of
unemployment can be studied as a sum of the associations between these focal variables over the
separate tables for cause of layoff.

To make this idea precise, consider for example the model of conditional independence, A ⊥
B |C for a three-way table. This model asserts thatA andB are independent within each level ofC.
Denote the hypothesis that A and B are independent at level C(k) by A ⊥ B |C(k), k = 1, . . .K.
Then one can show (Andersen, 1991) that

11This is an analog, for categorical data, of the ANOVA strategy for “probing interactions” by testing simple effects at the
levels of one or more of the factors involved in a two- or higher-way interaction.
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G2
A⊥B |C =

K∑
k

G2
A⊥B |C(k) . (5.6)

That is, the overall likelihood ratioG2 for the conditional independence model with (I−1)(J−1)K
degrees of freedom is the sum of the values for the ordinary association between A and B over the
levels of C (each with (I − 1)(J − 1) degrees of freedom). The same additive relationship holds
for the Pearson χ2 statistics: χ2

A⊥B |C =
∑K
k χ

2
A⊥B |C(k).

Thus, (a) the overall G2 (χ2) may be decomposed into portions attributable to the AB associ-
ation in the layers of C, and (b) the collection of mosaic displays for the dependence of A and B
for each of the levels of C provides a natural visualization of this decomposition. These provide an
analog, for categorical data, of the conditioning plot, or coplot, that Cleveland (1993b) has shown
to be an effective display for quantitative data. See Friendly (1999a) for further details.

Mosaic and other displays in the strucplot framework for partial association can be produced in
several different ways. One way is to use a model formula in the call to mosaic() which lists the
conditioning variables after the "|" (given) symbol, as in

~ Memory + Attitude | Age + Education

Another way is to use cotabplot(). This takes the same kind of conditioning model formula,
but presents each panel for the conditioning variables in a separate frame within a trellis-like grid.12

EXAMPLE 5.10: Employment status data
Data from a 1974 Danish study of 1,314 employees who had been laid off are given in the data

table Employment in vcd (from Andersen (1991, Table 5.12)). The workers are classified by:
(a) their employment status, on January 1, 1975 ("NewJob" or still "Unemployed"), (b) the
length of their employment at the time of layoff, (c) the cause of their layoff ("Closure", etc., or
"Replaced").

> data("Employment", package = "vcd")
> structable(Employment)

EmploymentLength <1Mo 1-3Mo 3-12Mo 1-2Yr 2-5Yr >5Yr
EmploymentStatus LayoffCause
NewJob Closure 8 35 70 62 56 38

Replaced 40 85 181 85 118 56
Unemployed Closure 10 42 86 80 67 35

Replaced 24 42 41 16 27 10

In this example, it is natural to regard EmploymentStatus (variable A) as the response
variable, and EmploymentLength (B) and LayoffCause (C) as predictors. In this case, the
minimal baseline model is the joint independence model, [A] [BC] , which asserts that employment
status is independent of both length and cause. This model fits quite poorly, as shown in the output
from loglm() below.

> loglm(~ EmploymentStatus + EmploymentLength * LayoffCause,
+ data = Employment)

Call:
loglm(formula = ~EmploymentStatus + EmploymentLength * LayoffCause,

data = Employment)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 172.28 11 0
Pearson 165.70 11 0

12Depending on your perspective, this has the advantage of adjusting for the total frequency in each conditional panel, or
the disadvantage of ignoring these differences.
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The residuals, shown in Figure 5.17, indicate an opposite pattern for the two categories of
LayoffCause: those who were laid off as a result of a closure are more likely to be unemployed,
regardless of length of time they were employed. Workers who were replaced, however, apparently
are more likely to be employed, particularly if they were employed for 3 months or more.

> # baseline model [A][BC]
> mosaic(Employment, shade = TRUE,
+ expected = ~ EmploymentStatus + EmploymentLength * LayoffCause,
+ main = "EmploymentStatus + Length * Cause")
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Figure 5.17: Mosaic display for the employment status data, fitting the baseline model of joint
independence.

Beyond this baseline model, it is substantively more meaningful to consider the conditional in-
dependence model,A ⊥ B |C, (or [AC][BC] in shorthand notation), which asserts that employment
status is independent of length of employment, given the cause of layoff. We fit this model as shown
below:

> loglm(~ EmploymentStatus * LayoffCause + EmploymentLength * LayoffCause,
+ data = Employment)

Call:
loglm(formula = ~EmploymentStatus * LayoffCause + EmploymentLength *

LayoffCause, data = Employment)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 24.630 10 0.0060927
Pearson 26.072 10 0.0036445

This model fits far better (G2(10) = 24.63), but the lack of fit is still significant. The residuals,
shown in Figure 5.18, still suggest that the pattern of association between employment and length
is different for replaced workers and those laid off due to closure of their workplace.
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> mosaic(Employment, shade = TRUE, gp_args = list(interpolate = 1 : 4),
+ expected = ~ EmploymentStatus * LayoffCause +
+ EmploymentLength * LayoffCause,
+ main = "EmploymentStatus * Cause + Length * Cause")
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Figure 5.18: Mosaic display for the employment status data, fitting the model of conditional inde-
pendence, [AC][BC].

To explain this result better, we can fit separate models for the partial relationship between
EmploymentStatus and EmploymentLength for the two levels of LayoffCause. In
R, with the Employment data as in table form, this is easily done using apply() over the
LayoffCause margin, giving a list containing the two loglm() models.

> mods.list <-
+ apply(Employment, "LayoffCause",
+ function(x) loglm(~ EmploymentStatus + EmploymentLength,
+ data = x))
> mods.list

$Closure
Call:
loglm(formula = ~EmploymentStatus + EmploymentLength, data = x)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 1.4786 5 0.91553
Pearson 1.4835 5 0.91497

$Replaced
Call:
loglm(formula = ~EmploymentStatus + EmploymentLength, data = x)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 23.151 5 0.00031578
Pearson 24.589 5 0.00016727



5.5: Model and plot collections 193

Extracting the model fit statistics for these partial models and adding the fit statistics for the
overall model of conditional independence, [AC][BC], gives the table below, illustrating the additive
property of G2 and χ2 (Eqn. (5.6)).

Model df G2 χ2

A ⊥ B |C1 5 1.49 1.48
A ⊥ B |C2 5 23.15 24.59
A ⊥ B |C 10 24.63 26.07

One simple way to visualize these results is to call mosaic() separately for each of the layers
corresponding to LayoffCause. The result is shown in Figure 5.19.

> mosaic(Employment[,,"Closure"], shade = TRUE,
+ gp_args = list(interpolate = 1 : 4),
+ margin = c(right = 1), main = "Layoff: Closure")
> mosaic(Employment[,,"Replaced"], shade = TRUE,
+ gp_args = list(interpolate = 1 : 4),
+ margin = c(right = 1), main = "Layoff: Replaced")
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Figure 5.19: Mosaic displays for the employment status data, with separate panels for cause of
layoff.

The simple summary from this example is that for workers laid off due to closure of their com-
pany, length of previous employment is unrelated to whether or not they are re-employed. However,
for workers who were replaced, there is a systematic pattern: those who had been employed for three
months or less are likely to remain unemployed, while those with longer job tenure are somewhat
more likely to have found a new job. 4

The statistical methods and R techniques described above for three-way tables extend naturally
to higher-way tables, as can be seen in the next example.

EXAMPLE 5.11: Corporal punishment data
Here we use the Punishment data from vcd, which contains the results of a study by the

Gallup Institute in Denmark in 1979 about the attitude of a random sample of 1,456 persons towards



194 5. Mosaic Displays for n-Way Tables

corporal punishment of children (Andersen, 1991, pp. 207–208). As shown below, this data set is a
frequency data frame representing a 2× 2× 3× 3 table, with table variables (a) attitude toward
use of corporal punishment (approve of “moderate” use or “no” approval); (b) memory of whether
the respondent had experienced corporal punishment as a child (yes/no); (c) education level of
respondent (elementary, secondary, high); and (d) age category of respondent.

> data("Punishment", package = "vcd")
> str(Punishment, vec.len = 2)

'data.frame': 36 obs. of 5 variables:
$ Freq : num 1 3 20 2 8 ...
$ attitude : Factor w/ 2 levels "no","moderate": 1 1 1 1 1 ...
$ memory : Factor w/ 2 levels "yes","no": 1 1 1 1 1 ...
$ education: Factor w/ 3 levels "elementary","secondary",..: 1 1 1 2 2 ...
$ age : Factor w/ 3 levels "15-24","25-39",..: 1 2 3 1 2 ...

Of main interest here is the association between attitude toward corporal punishment as an adult
(A) and memory of corporal punishment as a child (B), controlling for age (C) and education (D);
that is, the model A ⊥ B | (C,D), or [ACD][BCD] in shorthand notation.

As noted above, this conditional independence hypothesis can be decomposed into the 3 × 3
partial tests of A ⊥ B | (Ck, D`).

These tests and the associated graphics are somewhat easier to carry out with the data in table
form (pun) constructed below. While we’re at it, we recode the variable names and factor levels for
nicer graphical displays.

> pun <- xtabs(Freq ~ memory + attitude + age + education,
+ data = Punishment)
> dimnames(pun) <- list(
+ Memory = c("yes", "no"),
+ Attitude = c("no", "moderate"),
+ Age = c("15-24", "25-39", "40+"),
+ Education = c("Elementary", "Secondary", "High"))

Then, the overall test of conditional independence can be carried using loglm() out as

> (mod.cond <- loglm(~ Memory * Age * Education +
+ Attitude * Age * Education, data = pun))

Call:
loglm(formula = ~Memory * Age * Education + Attitude * Age *

Education, data = pun)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 39.679 9 8.6851e-06
Pearson 34.604 9 6.9964e-05

Alternatively, coindep_test() in vcd provides tests of conditional independence of two
variables in a contingency table by simulation from the marginal permutation distribution of the
input table. The version reporting a Pearson χ2 statistic is given by

> set.seed(1071)
> coindep_test(pun, margin = c("Age", "Education"),
+ indepfun = function(x) sum(x ^ 2), aggfun = sum)

Permutation test for conditional independence

data: pun
f(x) = 34.6, p-value <2e-16



5.5: Model and plot collections 195

These tests all show substantial association between attitude and memory of corporal punish-
ment. How can we understand and explain this?
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Figure 5.20: Conditional mosaic plot of the Punishment data for the model of conditional indepen-
dence of attitude and memory, given age and education. Shading of tiles is based on the sum of
squares statistic.

As in Example 5.10, we can partition the overall G2 or χ2 to show the contributions to this
association from the combinations of age and education. The call to apply() below fits an inde-
pendence model for Memory and Attitude for each stratum defined by the combinations of Age
and Education, and extracts the Pearson χ2 statistics. The result is returned as a 3× 3 matrix.

> mods.list <- apply(pun, c("Age", "Education"),
+ function(x) loglm(~ Memory + Attitude, data = x)$pearson)

One visual analog of this table of χ2 statistics is a cotabplot() of the (conditional) associa-
tion of attitude and memory over the age and education cells, shown in Figure 5.20. cotabplot()
is very general, allowing a variety of functions of the residuals to be used for shading (Zeileis et al.,
2007). Here we use the (Pearson) sum of squares statistic,

∑
k,` χ

2
k,`.
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> set.seed(1071)
> pun_cotab <- cotab_coindep(pun, condvars = 3 : 4, type = "mosaic",
+ varnames = FALSE, margins = c(2, 1, 1, 2),
+ test = "sumchisq", interpolate = 1 : 2)
> cotabplot(~ Memory + Attitude | Age + Education,
+ data = pun, panel = pun_cotab)

Alternatively, the pattern of conditional association can be shown somewhat more directly in
a conditional mosaic plot (Figure 5.21), using the same model formula to condition on age and
education. This simply organizes the display to split on the conditioning variables first, with larger
spacings.

> mosaic(~ Memory + Attitude | Age + Education, data = pun,
+ shade = TRUE, gp_args = list(interpolate = 1 : 4))
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Figure 5.21: Conditional mosaic plot of the Punishment data for the model of conditional inde-
pendence of attitude and memory, given age and education. This plot explicitly shows the total
frequencies in the cells of age and education by the areas of the main blocks for these variables.

Both Figure 5.20 and Figure 5.21 reveal that the association between attitude and memory be-
comes stronger with increasing age among those with the lowest education (first column). Among
those in the highest age group (bottom row), the strength of association decreases with increasing
education. These two displays differ in that in the cotabplot() of Figure 5.20, the marginal
frequencies of age and education are not shown, whereas in the mosaic() of Figure 5.21 they
determine the relative sizes of the tiles for the combinations of age and education.
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The divide-and-conquer strategy of partial association using statistical tests and visual displays
now provides a simple, coherent explanation for this table: memory of experienced violence as a
child tends to engender a more favorable attitude toward corporal punishment as an adult, but this
association varies directly with both age and education. 4

5.6 Mosaic matrices for categorical data

One reason for the wide usefulness of graphs of quantitative data has been the development of
effective, general techniques for dealing with high-dimensional data sets. The scatterplot matrix
shows all pairwise (marginal) views of a set of variables in a coherent display, whose design goal
is to show the interdependence among the collection of variables as a whole. It combines multiple
views of the data into a single display, which allows detection of patterns that could not readily
be discerned from a series of separate graphs. In effect, a multivariate data set in p dimensions
(variables) is shown as a collection of p(p − 1) two-dimensional scatterplots, each of which is the
projection of the cloud of points on two of the variable axes. These ideas can be readily extended to
categorical data.

A multiway contingency table of p categorical variables, A,B,C, . . ., contains the interdepen-
dence among the collection of variables as a whole. The saturated loglinear model, [ABC . . .] fits
this interdependence perfectly, but is often too complex to describe or understand.

By summing the table over all variables except two, A and B, say, we obtain a two-variable
(marginal) table, showing the bivariate relationship between A and B, which is also a projection of
the p-variable relation into the space of two (categorical) variables. If we do this for all p(p − 1)
unordered pairs of categorical variables and display each two-variable table as a mosaic, we have a
categorical analog of the scatterplot matrix, called a mosaic matrix. Like the scatterplot matrix, the
mosaic matrix can accommodate any number of variables in principle, but in practice is limited by
the resolution of our display to three or four variables.

In R, the main implementation of this idea is in the generic function pairs(). The vcd pack-
age extends this to mosaic matrices with methods for "table" and "structable" objects. The gpairs
package provides a generalized pairs plot, with appropriate graphics for a mixture of quantitative
and categorical variables.

5.6.1 Mosaic matrices for pairwise associations

EXAMPLE 5.12: Bartlett data on plum-root cuttings
The simplest example of what you can see in a mosaic matrix is provided by the 2 × 2 × 2

table used by Bartlett (1935) to illustrate a method for testing for no three-way interaction in a
contingency table (hypothesis H4 in Table 5.2).

The data set Bartlett in vcdExtra gives the result of an agricultural experiment to investi-
gate the survival of plum-root cuttings (Alive) in relation to two factors: Time of planting and
the Length of the cutting. In this experiment, 240 cuttings were planted for each of the 2 × 2
combinations of these factors, and their survival (Alive, Dead) was later recorded.

> pairs(Bartlett, gp = shading_Friendly2)

The mosaic matrix for these data, showing all two-way marginal relations, is shown in Fig-
ure 5.22. It can immediately be seen that Time and Length are independent by the design of the
experiment; we use gp=shading_Friendly here to emphasize this.

The top row and left column show the relation of survival to each of time of planting and cutting
length. It is easily seen that greater survival is associated with cuttings taken now (vs. spring) and
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Figure 5.22: Mosaic pairs plot for the Bartlett data. Each panel shows the bivariate marginal
relation between the row and column variables.

those cut long (vs. short), and the degree of association is stronger for planting time than for cutting
length. 4

EXAMPLE 5.13: Marital status and pre- and extramarital sex
In Example 5.9 we examined a series of models relating marital status to reported premarital and

extramarital sexual activity and gender in the PreSex data. Figure 5.23 shows the mosaic matrix
for these data. The diagonal panels show the labels for the category levels as well as the one-way
marginal totals.

> data("PreSex", package = "vcd")
> pairs(PreSex, gp = shading_Friendly2, space = 0.25,
+ gp_args = list(interpolate = 1 : 4),
+ diag_panel_args = list(offset_varnames = -0.5))

If we view gender, premarital sex, and extramarital sex as explanatory, and marital status (Di-
vorced vs. still Married) as the response, then the mosaics in row 1 (and in column 1)13 show how
marital status depends on each predictor marginally. The remaining panels show the relations within
the set of explanatory variables.

13Rows and columns in a mosaic matrix are identified as in a table or numerical matrix, with row 1, column 1 in the upper
left corner.
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Figure 5.23: Mosaic pairs plot for the PreSex data. Each panel shows the bivariate marginal relation
between the row and column variables.

Thus, we see in row 1, column 4, that marital status is independent of gender (all residuals equal
zero, here), by design of the data collection. In the (1, 3) panel, we see that reported premarital sex is
more often followed by divorce, while non-report is more prevalent among those still married. The
(1, 2) panel shows a similar, but stronger relation between extramarital sex and marriage stability.
These effects pertain to the associations of P and E with marital status (M)—the terms [PM] and
[EM] in the loglinear model. We saw earlier that an interaction of P and E (the term [PEM]) is
required to fully account for these data. This effect is not displayed in Figure 5.23.

Among the background variables (the loglinear term [GPE]), the (2, 3) panel shows a strong
relation between premarital sex and subsequent extramarital sex, while the (2, 4) and (3, 4) panels
show that men are far more likely to report premarital sex than women in this sample, and also more
likely to report extramarital sex.

Even though the mosaic matrix shows only pairwise, bivariate associations, it provides an inte-
grated view of all of these together in a single display.

4

EXAMPLE 5.14: Berkeley admissions
In Chapter 4 we examined the relations among the variables Admit, Gender, and Department in

the Berkeley admissions data (Example 4.1, Example 4.11, Example 4.15) using fourfold displays
(Figure 4.5 and Figure 4.6) and sieve diagrams (Figure 4.13). These displays showed either a
marginal relation (e.g., Admit, Gender) or the full three-way table.
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In contrast, Figure 5.24 shows all pairwise marginal relations among these variables, produced
using pairs(). Some additional arguments are used to control the details of labels for the diagonal
and off-diagonal panels.

> largs <- list(labeling = labeling_border(varnames = FALSE,
+ labels = c(T, T, F, T), alternate_labels = FALSE))
> dargs <- list(gp_varnames = gpar(fontsize = 20), offset_varnames = -1,
+ labeling = labeling_border(alternate_labels = FALSE))
> pairs(UCBAdmissions, shade = TRUE, space = 0.25,
+ diag_panel_args = dargs,
+ upper_panel_args = largs, lower_panel_args = largs)
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Figure 5.24: Mosaic matrix of the UCBAdmissions data showing bivariate marginal relations.

The panel in row 2, column 1 shows that Admission and Gender are strongly associated marginally,
as we saw in Figure 4.5, and overall, males are more often admitted. The diagonally opposite panel
(row 1, column 2) shows the same relation, splitting first by gender.14

The panels in the third column (and third row) provide the explanation for the paradoxical result
(see Figure 4.6) that, within all but department A, the likelihood of admission is equal for men and
women, yet, overall, there appears to be a bias in favor of admitting men (see Figure 4.5). The (1,

14Note that this is different than just the transpose or interchange of horizontal and vertical dimensions as in a scatterplot
matrix, because the mosaic display splits the total frequency first by the horizontal variable and then (conditionally) by the
vertical variable. The areas of all corresponding tiles are the same in each diagonally opposite pair, however, as are the
residuals shown by color and shading.



5.6: Mosaic matrices for categorical data 201

3) and (3, 1) panels show the marginal relation between Admission and Department; that is, how
admission rate varies across departments. Departments A and B have the greatest overall admission
rate, departments E and F the least. The (2, 3) and (3, 2) panels show how men and women apply
differentially to the various departments. It can be seen that men apply in much greater numbers to
departments A and B, with higher admission rates, while women apply in greater numbers to the
departments C–F, with the lowest overall rate of admission.

4

5.6.2 Generalized mosaic matrices and pairs plots
We need not show only the marginal relation between each pair of variables in a mosaic matrix.
Friendly (1999b) describes the extension of this idea to conditional, partial, and other views of a
contingency table.

In pairs.table(), different panel functions can be used to specify what is displayed in the
upper, lower, and diagonal panels. For the off-diagonal panels, a type argument can be used to
plot mosaics showing various kinds of independence relations:

type = "pairwise" – Shows bivariate marginal relations, collapsed over all other variables.
type = "total" – Shows mosaic plots for mutual independence.
type = "conditional" – Shows mosaic plots for conditional independence given all other

variables.
type = "joint" – Shows mosaic plots for joint independence of all pairs of variables from the

others.

EXAMPLE 5.15: Berkeley admissions
Figure 5.25 shows the generalized mosaic matrix for the UCBAdmissions data, using 3-way

mosaics for all the off-diagonal cells. The observed frequencies, of course, are the same in all these
cells. However, in the lower panels, the tiles are shaded according to models of joint independence,
while in the upper panels, they are shaded according to models of mutual independence.

> pairs(UCBAdmissions, space = 0.2,
+ lower_panel = pairs_mosaic(type = "joint"),
+ upper_panel = pairs_mosaic(type = "total"))

In this example, it is more useful to fit and display the models of conditional independence for
each pair of row, column variables given the remaining one, as shown in Figure 5.26.

> pairs(UCBAdmissions, type = "conditional", space = 0.2)

Thus, the shading in the (1, 2) and (2, 1) panels shows the fit of the model [Admit, Dept]
[Gender, Dept], which asserts that Admission and Gender are independent, given (controlling for)
Department. Except for Department A, this model fits quite well, again indicating lack of gender
bias. The (1, 3) and (3, 1) panels show the relation between admission and department controlling
for gender, highlighting the differential admission rates across departments.

4

Beyond this, the framework of pairs plots can be further generalized to mixtures of quantita-
tive and categorical variables, as first described in Friendly (2003) and then in a wider context by
Emerson et al. (2013) and Friendly (2013). The essential idea is to consider the combination of
two variables, each of which can be either categorical (C) or quantitative (Q), and various ways to
render that combination in a graphical display:

CC: mosaic display, sieve diagram, doubledecker plot, faceted or divided bar chart;



202 5. Mosaic Displays for n-Way Tables

Admit

Admitted

Rejected

1755 2771

Gender

Male

Female

2691 1835

Dept

A C E

B D F

933 585 918 792 584 714

Figure 5.25: Generalized mosaic matrix of the UCBAdmissions data. The above-diagonal plots fit
models of joint independence; below-diagonal plots fit models of mutual independence.

CQ: side-by-side boxplots, stripplots, faceted histograms, aligned density plots;
QQ: scatterplot, corrgram, data ellipses, etc.

In R some of these possibilities are provided in the gpairs package (using grid graphics and the vcd
strucplot framework), and the GGally (Schloerke et al., 2014) package (an extension to ggplot2).

EXAMPLE 5.16: Arthritis treatment
We illustrate these ideas with the Arthritis data using the gpairs package in Figure 5.27. In

this data, the variables Treatment, Sex, and Improved are categorical, and Age is quantitative.
The call to gpairs() below reorders the variables to put the response variable Improved in row
1, column 1. Various options can be passed to mosaic() using the mosaic.pars argument.

> library(gpairs)
> data("Arthritis", package = "vcd")
> gpairs(Arthritis[,c(5, 2, 3, 4)],
+ diag.pars = list(fontsize = 20),
+ mosaic.pars = list(gp = shading_Friendly,
+ gp_args = list(interpolate = 1 : 4)))

gpairs() provides a variety of options for the CQ and QQ combinations, as well as the
diagonal cells, but only the defaults are used here. The bottom row, corresponding to Age, uses
boxplots to show the distributions of age for each of the categorical variables. The last column
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Figure 5.26: Generalized mosaic matrix of the UCBAdmissions data. The off-diagonal plots fit
models of conditional indpendence.

shows these same variables as stripplots (or “barcodes”), which show all the individual observations.
In the (1, 4) and (4, 1) panels, it can be seen that younger patients are more likely to report no
improvement. The other panels in the first row (and column) show that improvement is more likely
in the treated condition and greater among women than men. 4

5.7 3D mosaics

Mosaic-like displays use the idea of recursive partitioning of a unit square to portray the frequencies
in an n-way table by the area of rectangular tiles with (x, y) coordinates. The same idea extends
naturally to a 3D graphic. This starts with a unit cube, which is successively subdivided into 3D
cuboids along (x, y, z) dimensions, and the frequency in a table cell is then represented by volume.

As in the 2D versions, each cuboid can be shaded to represent some other feature of the data,
typically the residual from some model of independence. In principle, the display can accommodate
more than 3 variables by using a sequence of split directions along the (x, y, z) axes.

One difficulty in implementing this method is that, short of using a 3D printer, the canvas for a
3D plot on a screen or printer is still projected on a two-dimensional surface, and graphical elements
(volumes, lines, text) toward the front of the view will obscure those in the back. In R, a major
advance in 3D graphics is available in the rgl (Adler and Murdoch, 2014) package, which mitigates
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Figure 5.27: Generalized pairs plot of the Arthritis data. Combinations of categorical and quantita-
tive variables can be rendered in various ways.

these problems by: (a) providing an interactive graphic window that can be zoomed and rotated
manually with the mouse; (b) allowing dynamic graphics under program control, for example to
animate a plot or make a movie; (c) providing control of the details of 3D rendering, including
transparency of shapes, surface shading, lighting, and perspective.

The vcdExtra package implements 3D mosaics using rgl graphics. mosaic3d() provides
methods for "loglm" as well as "table" (or "structable") objects. At the time of writing, only some
features of 2D mosaics are available.

EXAMPLE 5.17: Bartlett data on plum-root cuttings
In Example 5.12 we showed the mosaic matrix for the Bartlett, fitting the model of mutual

independence to show all associations among the table variables, Alive, Time of planting, and
Length of cutting. Figure 5.28 shows the 3D version, produced using mosaic3d():

> mosaic3d(Bartlett)

In the view of this figure, it can be seen that cuttings are more likely to be alive when planted
Now and when cut Long. These relations can more easily be appreciated by rotating the 3D display.

4
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Figure 5.28: 3D mosaic plot of the Bartlett data, according to the model of mutual independence.

5.8 Visualizing the structure of loglinear models

For quantitative response data, it is easy to visualize a fitted model—for linear regression, this is
just a plot of the fitted line; for multiple regression or nonlinear regression with two predictors, this
is a plot of the fitted response surface. For a categorical response variable, an analog of such plots
is provided by effect plots, described later in this book.

For contingency table data, mosaic displays can be used in a similar manner to illuminate the
relations among variables in a contingency table represented in various loglinear models, a point
described by Theus and Lauer (1999). In fact, each of the model types depicted in Table 5.2 has a
characteristic shape and structure in a mosaic display. This, in turn, leads to a clearer understanding
of the structure that appears in real data when a given model fits, the relations among the models,
and the use of mosaic displays. The essential idea is a simple extension of what we do for more
traditional models: show the expected (fitted) frequencies under a given model rather than observed
frequencies in a mosaic-like display.

To illustrate, we use some artificial data on the relations among age, sex, and symptoms of some
disease shown in the 2× 2× 2 table struc below.

> struc <- array(c(6, 10, 312, 44,
+ 37, 31, 192, 76),
+ dim = c(2, 2, 2),
+ dimnames = list(Age = c("Young", "Old"),
+ Sex = c("F", "M"),
+ Disease = c("No", "Yes"))
+ )
> struc <- as.table(struc)
> structable(struc)

Sex F M
Age Disease
Young No 6 312

Yes 37 192
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Old No 10 44
Yes 31 76

First, note that there are substantial associations in this table, as shown in Figure 5.29, fitting the
(default) mutual independence model.

> mosaic(struc, shade = TRUE)

The first split by Age shows strong partial associations between Sex and Disease for both
young and old. However, the residuals have an opposite pattern for young and old, suggesting a
more complex relationship among these variables.

In this section we are asking a different question: what would mosaic displays look like if
the data were in accord with simpler models? One way to do this is simply to use the expected
frequencies to construct the tiles, as in sieve diagrams. The result, in Figure 5.30, shows that the
tiles for sex and disease align for each of the age groups, but it is harder to see the relations among
all three variables in this plot.

> mosaic(struc, type = "expected")

We can visualize the model-implied relations among all variables together more easily using
mosaic matrices.

5.8.1 Mutual independence

For example, to show the structure of a table that exactly fits the model of mutual independence,
H1, use the loglm() to find the fitted values, fit, as shown below. The function fitted()
extracts these from the "loglm" object.
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Figure 5.29: Mosaic display for the data on age, sex, and disease. Observed frequencies are shown
in the plot, and residuals reflect departure from the model of mutual independence.
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Figure 5.30: Mosaic display for the data on age, sex, and disease, using expected frequencies under
mutual independence.

> mutual <- loglm(~ Age + Sex + Disease, data = struc, fitted = TRUE)
> fit <- as.table(fitted(mutual))
> structable(fit)

Sex F M
Age Disease
Young No 34.0991 253.3077

Yes 30.7992 228.7940
Old No 10.0365 74.5567

Yes 9.0652 67.3416

These fitted frequencies then have the same one-way margins as the data in struc, but
have no two-way or higher associations. Then pairs() for this table, using type="total",
shows the three-way mosaic for each pair of variables, giving the result in Figure 5.31. We use
gp=shading_Friendly to explicitly indicate the zero residuals in the display,

> pairs(fit, gp = shading_Friendly2, type = "total")

In this figure the same data are shown in all the off-diagonal panels and the mutual independence
model was fitted in each case, but with the table variables permuted. All residuals are exactly zero
in all cells, by construction. We see that in each view, the four large tiles corresponding to the first
two variables align, indicating that these two variables are marginally independent. For example, in
the (1, 2) panel, age and sex are independent, collapsed over disease.

Moreover, comparing the top half to the bottom half in any panel we see that the divisions
by the third variable are the same for both levels of the second variable. In the (1, 2) panel, for
example, age and disease are independent for both males and females. This means that age and sex
are conditionally independent given disease (age ⊥ sex |disease).

Because this holds in all six panels, we see that mutual independence implies that all pairs of
variables are conditionally independent, given the remaining one, (X ⊥ Y |Z) for all permutations
of variables. A similar argument can be used to show that joint independence also holds, i.e.,
((X,Y ) ⊥ Z) for all permutations of variables.

Alternatively, you can also visualize these relationships interactively in a 3D mosaic using
mosaic3d() that allows you to rotate the mosaic to see all views. In Figure 5.32, all of the 3D
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Figure 5.31: Mosaic matrix for fitted values under mutual independence. In all panels the joint
frequencies conform to the one-way margins.

tiles are unshaded and you can see that the 3D unit cube has been sliced according to the marginal
frequencies.

> mosaic3d(fit)

5.8.2 Joint independence
The model of joint independence, H2 : (A,B) ⊥ C, or equivalently, the loglinear model [AB][C]
may be visualized similarly by a mosaic matrix in which the data are replaced by fitted values under
this model. We illustrate this for the model [Age Sex][Disease], calculating the fitted values in a
similar way as before.

> joint <- loglm(~ Age * Sex + Disease, data = struc, fitted = TRUE)
> fit <- as.table(fitted(joint))
> structable(fit)

Sex F M
Age Disease
Young No 22.593 264.814

Yes 20.407 239.186
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Figure 5.32: 3D mosaic plot of frequencies according to the model of mutual independence. The
one-way margins are slices through the unit cube.

Old No 21.542 63.051
Yes 19.458 56.949

The pairs.table() plot, now using simpler pairwise plots (type="pairwise"), is shown
in Figure 5.33.

> pairs(fit, gp = shading_Friendly2)

This shows, in row 3 and column 3, the anticipated independence of both age and sex with
disease, collapsing over the remaining variable. The (1, 2) and (2, 1) panels show that age and sex
are still associated when disease is ignored.

5.9 Related visualization methods

A variety of other graphical methods provide the means for visualizing relationships in multiway
frequency tables. We briefly describe a few of these here, without much detail, to give a sense of
some alternatives.

5.9.1 Doubledecker plots

Doubledecker plots visualize the dependence of one categorical (typically binary) variable on fur-
ther categorical variables. Formally, they are mosaic plots with vertical splits for all dimensions
(predictors) except the last one, which represents the dependent variable (outcome). The last vari-
able is visualized by horizontal splits, no space between the tiles, and separate colors for the levels.

They have the advantage of making it easier to “read” the differences among the conditional
response proportions in relation to combinations of the explanatory variables. Moreover, for a
binary response, the difference in these conditional proportions for any two columns has a direct
relation to the odds ratio for a positive response in relation to those predictor levels (Hofmann,
2001).

The doubledecker() function in vcd takes a formula argument of the form R ~ E1 + E2
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Figure 5.33: Mosaic matrix for fitted values under joint independence for the model [Age
Sex][Disease].

+ ... where R is the response variable and E1, E2, . . . are the predictors in the contingency table
in array form. The shorthand notation, R ~ . means that all variables other than R are taken as
predictors, in their order in the array.

EXAMPLE 5.18: Berkeley admissions
Figure 5.34 shows the doubledecker plot for the UCBAdmissions data. By default, the levels

of the response (Admit) are taken in their order in the array and shaded to highlight the last level
(Rejected). We want to highlight Admitted, so we reverse this dimension in the call below.

> doubledecker(Admit ~ Dept + Gender, data = UCBAdmissions[2:1, , ])

In Figure 5.34, it is easy to see the effects of both Dept and Gender on Admit. Admission
rate declines across departments A–E, and within departments, the proportion admitted is roughly
the same, except for department A, where more female applicants are admitted. 4

EXAMPLE 5.19: Titanic data
Figure 5.35 shows the doubledecker plot for the Titanic data. The levels of the response

(Survived) are shaded in increasing grey levels, highlighting the proportions of survival.

> doubledecker(Survived ~ Class + Age + Sex, Titanic)

This order of variables makes it easiest to compare survival of men and women within each
age–class combination, but you can also see that survival of adult women decreases with class, and
survival among men was greatest in first class. Some additional visualizations of these relationships
are illustrated using the next topic in Example 5.21.

4
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Figure 5.34: Doubledecker plot for the UCBAdmissions data.
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Figure 5.35: Doubledecker plot for the Titanic data.

5.9.2 Generalized odds ratios?

In Example 4.12, we used fourfold displays (Figure 4.7) to analyze the odds ratio between breath-
lessness and wheeze in coal miners as a function of age. Figure 4.8 showed that a plot of the odds
ratio directly against age gave a simplified description of this three-way relationship.

Odds ratios for 2 × 2 tables can be generalized to R × C tables in a variety of ways, and these
can also be calculated for n-way tables by treating all but the first two dimensions as strata. Plots of
these generalized odds ratios can be quite informative, perhaps more so than in the 2× 2× k case.

Consider an R × C table with frequencies nij . Then a set of (R − 1) × (C − 1) local odds
ratios, θi,j , can be calculated as the odds ratios for adjacent pairs of rows and columns as shown in
the left panel of Figure 5.36.

θij =
nij/ni+1,j

ni,j+1/ni+1,j+1
=
nij × ni+1,j+1

ni+1,j × ni,j+1
,

i = 1, 2, . . . , R− 1

j = 1, 2, . . . , C − 1
.

These odds ratios correspond to “profile contrasts” (or sequential contrasts or successive dif-
ferences) for ordered categories. Similarly, if one row category and one column category (say, the
last) are considered baseline or reference categories, odds ratios with respect to contrasts with those
categories (Figure 5.36, right panel) are defined as

θij =
ni,j × nR,C
ni,C × nR,j

,
i = 1, 2, . . . , R− 1

j = 1, 2, . . . , C − 1
.
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Figure 5.36: Generalized odds ratios for an R × C table. Left: local odds ratios for adjacent
categories. Right: odds ratios with respect to a reference category (the last). Each log odds ratio is
a contrast of the log frequencies, shown by the cell weights.

Note that all such parameterizations are equivalent, in that one can derive all other possible odds
ratios from any non-redundant set, but substance-driven contrasts will be easier to interpret.

This calculation is simple in terms of log odds ratios, because it corresponds to a contrast among
the log frequencies, with weights ±1 for the four relevant cells. For local odds ratios, these are

log(θij) =
(

1 −1 −1 1
)

log
(
nij ni+1,j ni,j+1 ni+1,j+1

)T
.

Consider an R×C ×K1 ×K2 × . . . frequency table nij···, with factors K1,K2 . . . taken as strata.
Let n = vec(nij···) be the N × 1 vectorization of the frequency table. Then, all log odds ratios and
their asymptotic covariance matrix can be calculated as:

log(θ̂) = C log(n)

S ≡ V[log(θ)] = C diag (n)−1 CT

where C is an N -column matrix containing all zeros, except for two +1 elements and two −1
elements in each row that select the four cells involved in each log lodds ratio.15

The function loddsratio() in vcd calculates these values for the categories of the first
two dimensions of an n-way table, together with their asymptotic covariance matrix. Additional
dimensions are treated as strata. The as.array() and as.data.frame() methods can be
used to convert a loddsratio object to a form suitable for plotting or further analysis.

EXAMPLE 5.20: Corporal punishment data
Example 5.11 used mosaic displays to describe the relationship between attitude toward cor-

poral punishment of children in relationship to memory of having experienced that as a child and
education and age of the respondent. Given that attitude is the response, we could examine the
odds ratios among this variable and any one predictor, treating the other variables as strata. Contin-
uing the analysis of Example 5.11, we calculate log odds ratios for the association of attitude
and memory, stratified by age and education.

> data("Punishment", package = "vcd")
> pun_lor <- loddsratio(Freq ~ memory + attitude | age + education,
+ data = Punishment)

15Some additional theory and applications of generalized odds ratios for ordered variables is given by Goodman (1983).
Hofmann (2001) describes some connections between odds ratios, loglinear models, and visual modeling using doubledecker
plots and mosaic plots.
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The as.data.frame()method converts this to a data frame, and adds standard errors (ASE).

> pun_lor_df <- as.data.frame(pun_lor)

The plot method for loddsratio objects conveniently plots the log odds ratio (LOR) against
the strata variables, age or education, and by default also adds error bars. The result is shown
in Figure 5.37.

> plot(pun_lor)
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Figure 5.37: Log odds ratio for the association between attitude and memory of corporal punish-
ment, stratified by age and education. Error bars show ±1 standard error.

Compared to Figure 5.20, the differences among the age and education groups are now clear.
For respondents less than age 40, increasing education increases the association (log odds ratio)
between attitude and memory: those who remembered corporal punishment as a child are more
likely to approve of it as their education increases. This result is reversed for those over 40, where
all log odds ratios are negative: memory of corporal punishment makes it less likely to approve, and
this effect becomes stronger with increased education.

Because log odds ratios have an approximate normal distribution under the null hypothesis that
all log θij = 0, you can treat these values as data, and carry out a rough analysis of the effects of the
stratifying variables using ANOVA, with weights inversely proportional to the estimated sampling
variances.16 In the analysis shown below, we have treated age and education as ordered (numeric)
variables.

> pun_mod <- lm(LOR ~ age * education, data = pun_lor_df,
+ weights = 1 / ASE^2)
> anova(pun_mod)

16This ignores the covariances among the log odds ratios, which are not independent. A proper analysis uses generalized
least squares with a weight matrix S−1, where S = V[log(θ)] is the covariance matrix.
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Analysis of Variance Table

Response: LOR
Df Sum Sq Mean Sq F value Pr(>F)

age 1 1.04 1.04 2.72 0.160
education 1 1.84 1.84 4.79 0.080 .
age:education 1 5.04 5.04 13.13 0.015 *
Residuals 5 1.92 0.38
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This confirms the interaction of age and education on the association between attitude and mem-
ory that we described from visual inspection of Figure 5.37. 4

EXAMPLE 5.21: Titanic data
For the Titanic data, it is useful to examine the odds ratios for survival in relation to age or

sex, using the remaining variables as strata. Some preprocessing is nececessary first: These data
contain structural zeros as there were no children in the crew. Accordingly, we set the correspond-
ing cell entries to NA to avoid the calculation of nonsensical values. (Problems of zero frequencies
in frequency tables are discussed in more detail in Section 9.5). Additionally, we reverse the order
of the levels so that Survived=="Yes" and Age=="Adult" are first. The values calculated
below then give the log odds of survival for an adult compared to a child in the combinations sex
and class.

> Titanic2 <- Titanic[, , 2:1, 2:1]
> Titanic2["Crew", , "Child", ] <- NA
> titanic_lor1 <- loddsratio(~ Survived + Age | Class + Sex,
+ data = Titanic2)
> titanic_lor1

log odds ratios for Survived and Age by Class, Sex

Sex
Class Male Female
1st -3.12102 2.342518
2nd -5.50154 -1.510269
3rd -0.66874 0.031104
Crew NA NA

Similarly, for survival and sex, we obtain the log odds ratios of survival for males versus females,
for the combinations of age and class.

> titanic_lor2 <- loddsratio(~ Survived + Sex | Class + Age,
+ data = Titanic2)
> titanic_lor2

log odds ratios for Survived and Sex by Class, Age

Age
Class Adult Child
1st -4.1643 1.29928
2nd -4.1516 -0.16034
3rd -1.4786 -0.77879
Crew -3.0156 NA

The plots for both tables are shown in Figure 5.38.
In the left panel of Figure 5.38 you can see that the odds ratio of survival for adults relative to

children was always greater for females as compared to males, but much less so in 3rd class. In the
right panel, the odds ratio of survival for males versus females was always greater for children than
adults, again less so in 3rd class. 4
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Figure 5.38: Log odds ratio plots for the Titanic data. Left: Odds ratios for survival and age, by
sex and class. Right: for survival and sex, by age and class. Error bars show ±1 standard error.

Other examples and plots for log odds ratios are shown in help(loddsratio).

5.10 Chapter summary

• The mosaic display depicts the frequencies in a contingency table by a collection of rectangular
“tiles” whose area is proportional to the cell frequency. The residual from a specified model is
portrayed by shading the tile to show the sign and magnitude of the deviation from the model.

• For two-way tables, the tiles for the second variable align at each level of the first variable when
the two variables are independent (see Figure 5.10).

• The perception and understanding of patterns of association (deviations from independence)
are enhanced by reordering the rows or columns to give the shading of the residuals a more
coherent pattern. An opposite-corner pattern “explains” the association in terms of the ordering
of the factor levels.

• For three-way and larger tables, a variety of models can be fit and visualized. Starting with a
minimal baseline model, the pattern of residuals will often suggest additional terms that must
be added to “clean the mosaic.”

• It is often useful to examine the sequential mosaic displays for the marginal subtables with the
variables in a given order. Sequential models of joint independence provide a breakdown of
the total association in the full table, and are particularly appropriate when the last variable is a
response.

• Partial association, which refers to the associations among a subset of variables, within the
levels of other variables, may be easily studied by constructing separate mosaics for the subset
variables for the levels of the other, “given” variables. These displays provide a breakdown of
a model of conditional association for the whole table, and serve as an analog of coplots for
quantitative data.
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• Mosaic matrices, consisting of all pairwise plots of an n-way table, provide a way to visualize
all marginal, joint, or conditional relations simultaneously. Doubledecker plots and plots of
generalized odds ratios provide other methods to visualize n-way tables.

• The structural relations among model terms in various loglinear models themselves can also be
visualized by mosaic matrices showing the expected, rather than observed, frequencies under
different models.

• Related visualization techniques include doubledecker plots for binary response models and line
plots for generalized odds ratios.

5.11 Lab exercises

Exercise 5.1 The data set criminal in the package logmult gives the 4 × 5 table below of
the number of men aged 15–19 charged with a criminal case for whom charges were dropped in
Denmark from 1955–1958.

> data("criminal", package = "logmult")
> criminal

Age
Year 15 16 17 18 19
1955 141 285 320 441 427
1956 144 292 342 441 396
1957 196 380 424 462 427
1958 212 424 399 442 430

(a) Use loglm() to test whether there is an association between Year and Age. Is there evi-
dence that dropping of charges in relation to age changed over the years recorded here?

(b) Use mosaic() with the option shade=TRUE to display the pattern of signs and magnitudes
of the residuals. Compare this with the result of mosaic() using “Friendly shading,” from
the option gp=shading_Friendly. Describe verbally what you see in each regarding the
pattern of association in this table.

Exercise 5.2 The data set AirCrash in vcdExtra gives a database of all crashes of commercial
airplanes between 1993–2015, classified by Phase of the flight and Cause of the crash. How can
you best show is the nature of the association between these variables in a mosaic plot? Start by
making a frequency table, aircrash.tab:

> data("AirCrash", package = "vcdExtra")
> aircrash.tab <- xtabs(~ Phase + Cause, data = AirCrash)

(a) Make a default mosaic display of the data with shade=TRUE and interpret the pattern of the
high-frequency cells.

(b) The default plot has overlapping labels due to the uneven marginal frequencies relative to
the lengths of the category labels. Experiment with some of the labeling_args options
(abbreviate, rot_labels, etc.) to see if you can make the plot more readable. Hint: a
variety of these are illustrated in Section 4.1 of vignette("strucplot")

(c) The levels of Phase and Cause are ordered alphabetically (because they are factors). Exper-
iment with other orderings of the rows/columns to make interpretation clearer, e.g., ordering
Phase temporally or ordering both factors by their marginal frequency.
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Exercise 5.3 The Lahman package contains comprehensive data on baseball statistics for Major
League Baseball from 1871 through 2012. For all players, the Master table records the handedness
of players, in terms of throwing (L, R) and batting (B, L, R), where B indicates “both.” The table
below was generated using the following code:

> library(Lahman)
> data("Master", package = "Lahman")
> basehands <- with(Master, table(throws, bats))

Bats
Throws B L R

L 177 2640 527
R 924 1962 10442

• Use the code above, or else enter these data into a frequency table in R.
• Construct mosaic displays showing the relation of batting and throwing handedness, split first

by batting and then by throwing.
• From these displays, what can be said about players who throw with their left or right hands

in terms of their batting handedness?

Exercise 5.4 ? A related analysis concerns differences in throwing handedness among baseball
players according to the fielding position they play. The following code calculates such a frequency
table.

> library(Lahman)
> MasterFielding <- data.frame(merge(Master, Fielding, by = "playerID"))
> throwPOS <- with(MasterFielding, table(POS, throws))

(a) Make a mosaic display of throwing hand vs. fielding position.
(b) Calculate the percentage of players throwing left-handed by position. Make a sensible graph

of this data.
(c) Re-do the mosaic display with the positions sorted by percentage of left-handers.
(d) Is there anything you can say about positions that have very few left-handed players?

Exercise 5.5 For the Bartlett data described in Example 5.12, fit the model of no three-way
association, H4 in Table 5.2.

(a) Summarize the goodness of fit for this model, and compare to simpler models that omit one or
more of the two-way terms.

(b) Use a mosaic-like display to show the lack of fit for this model.

Exercise 5.6 Red core disease, caused by a fungus, is not something you want if you are a straw-
berry. The data set jansen.strawberry from the agridat package gives a frequency data frame
of counts of damage from this fungus from a field experiment reported by Jansen (1990). See the
help file for details. The following lines create a 3× 4× 3 table of crossings of 3 male parents with
4 (different) female parents, recording the number of plants in four blocks of 9 or 10 plants each
showing red core disease in three ordered categories, C1, C2, or C3.

> data("jansen.strawberry", package = "agridat")
>
> dat <- jansen.strawberry
> dat <- transform(dat, category = ordered(category,
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+ levels = c('C1','C2','C3')))
> levels(dat$male) <- paste0("M", 1:3)
> levels(dat$female) <- paste0("F", 1:4)
>
> jansen.tab <- xtabs(count ~ male + female + category, data = dat)
> names(dimnames(jansen.tab)) <- c("Male parent", "Female parent",
+ "Disease category")
> ftable(jansen.tab)

(a) Use pairs(jansen.tab, shade=TRUE) to display the pairwise associations among
the three variables. Describe how disease category appears to vary with male and female
parent. Why is there no apparent association between male and female parent?

(b) As illustrated in Figure 5.6, use mosaic() to prepare a 3-way mosaic plot with the tiles
colored in increasing shades of some color according to disease category. Describe the pattern
of category C3 in relation to male and female parent. (Hint: the highlighting arguments
are useful here.)

(c) With category as the response variable, the minimal model for association is [MF][C], or
~ 1*2 + 3. Fit this model using loglm() and display the residuals from this model with
mosaic(). Describe the pattern of lack of fit of this model.

Exercise 5.7 The data set caith in MASS gives another classic 4× 5 table tabulating hair color
and eye color, this for people in Caithness, Scotland, originally from Fisher (1940). The data is
stored as a data frame of cell frequencies, whose rows are eye colors and whose columns are hair
colors.

> data("caith", package = "MASS")
> caith

fair red medium dark black
blue 326 38 241 110 3
light 688 116 584 188 4
medium 343 84 909 412 26
dark 98 48 403 681 85

(a) The loglm() and mosaic() functions don’t understand data in this format, so use Caith
<- as.matrix(caith) to convert to array form. Examine the result, and use
names(dimnames(Caith))<-c() to assign appropriate names to the row and column
dimensions.

(b) Fit the model of independence to the resulting matrix using loglm().
(c) Calculate and display the residuals for this model.
(d) Create a mosaic display for this data.

Exercise 5.8 The HairEyePlace data in vcdExtra gives similar data on hair color and eye
color, for both Caithness and Aberdeen as a 4× 5× 2 table.

(a) Prepare separate mosaic displays, one for each of Caithness and Aberdeen. Comment on any
difference in the pattern of residuals.

(b) Construct conditional mosaic plots, using the formula ~ Hair + Eye | Place and both
mosaic() and cotabplot(). It is probably more useful here to suppress the legend in
these plots. Comment on the difference in what is shown in the two displays.

Exercise 5.9 Bertin (1983, pp. 30–31) used a 4-way table of frequencies of traffic accident victims
in France in 1958 to illustrate his scheme for classifying data sets by numerous variables, each of
which could have various types and could be assigned to various visual attributes. His data are
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contained in Accident in vcdExtra, a frequency data frame representing his 5× 2× 4× 2 table
of the variables age, result (died or injured), mode of transportation, and gender.

> data("Accident", package = "vcdExtra")
> str(Accident, vec.len=2)

'data.frame': 80 obs. of 5 variables:
$ age : Ord.factor w/ 5 levels "0-9"<"10-19"<..: 5 5 5 5 5 ...
$ result: Factor w/ 2 levels "Died","Injured": 1 1 1 1 1 ...
$ mode : Factor w/ 4 levels "4-Wheeled","Bicycle",..: 4 4 2 2 3 ...
$ gender: Factor w/ 2 levels "Female","Male": 2 1 2 1 2 ...
$ Freq : int 704 378 396 56 742 ...

(a) Use loglm() to fit the model of mutual independence, Freq ~ age+mode+gender+result
to this data set.

(b) Use mosaic() to produce an interpretable mosaic plot of the associations among all vari-
ables under the model of mutual independence. Try different orders of the variables in the mo-
saic. (Hint: the abbreviate component of the labeling_args argument to mosaic()
will be useful to avoid some overlap of the category labels.)

(c) Treat result ("Died" vs. "Injured") as the response variable, and fit the model
Freq ~ age*mode*gender + result that asserts independence of result from all
others jointly.

(d) Construct a mosaic display for the residual associations in this model. Which combinations of
the predictor factors are more likely to result in death?

Exercise 5.10 The data set Vietnam in vcdExtra gives a 2×5×4 contingency table in frequency
form reflecting a survey of student opinion on the Vietnam War at the University of North Carolina
in May 1967. The table variables are sex, year in school, and response, which has categories: (A)
Defeat North Vietnam by widespread bombing and land invasion; (B) Maintain the present pol-
icy; (C) De-escalate military activity, stop bombing and begin negotiations; (D) Withdraw military
forces immediately. How does the chosen response vary with sex and year?

> data("Vietnam", package = "vcdExtra")
> str(Vietnam)

'data.frame': 40 obs. of 4 variables:
$ sex : Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 1 1 1 1 ...
$ year : int 1 1 1 1 2 2 2 2 3 3 ...
$ response: Factor w/ 4 levels "A","B","C","D": 1 2 3 4 1 2 3 4 1 2 ...
$ Freq : int 13 19 40 5 5 9 33 3 22 29 ...

(a) With response (R) as the outcome variable and year (Y) and sex (S) as predictors, the
minimal baseline loglinear model is the model of joint independence, [R][YS]. Fit this model,
and display it in a mosaic plot.

(b) Construct conditional mosaic plots of the response versus year separately for males and
females. Describe the associations seen here.

(c) Follow the methods shown in Example 5.10 to fit separate models of independence for the
levels of sex, and the model of conditional independence, R ⊥ Y |S. Verify that the decom-
position of G2 in Eqn. (5.6) holds for these models.

(d) Construct a useful 3-way mosaic plot of the data for the model of conditional independence.

Exercise 5.11 Consider the models for 4-way tables shown in Table 5.3.

(a) For each model, give an independence interpretation. For example, the model of mutual inde-
pendence corresponds to A ⊥ B ⊥ C ⊥ D.
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(b) Use the functions shown in the table together with loglin2formula() to print the corre-
sponding model formulas for each.

Exercise 5.12 The dataset Titanic classifies the 2,201 pasengers and crew of the Titanic by
Class (1st, 2nd, 3rd, Crew), Sex, Age, and Survived. Treating Survived as the response
variable,

(a) Fit and display a mosaic plot for the baseline model of joint independence, [CGA][S]. Describe
the remaining pattern of associations.

(b) Do the same for a “main effects” model that allows two-way associations between each of C,
G, and A with S.

(c) What three-way association term should be added to this model to allow for greater survival
among women and children? Does this give an acceptable fit?

(d) Test and display models that allow additional three-way associations until you obtain a rea-
sonable fit.
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Correspondence analysis provides visualizations of associations in a two-way contin-
gency table in a small number of dimensions. Multiple correspondence analysis extends
this technique to n-way tables. Other graphical methods, including mosaic matrices and
biplots, provide complementary views of loglinear models for two-way and n-way contin-
gency tables, but correspondence analysis methods are particularly useful for a simple
visual analysis.

6.1 Introduction

Whenever a large sample of chaotic elements is taken in hand and marshalled in the
order of their magnitude, an unsuspected and most beautiful form of regularity proves
to have been latent all along.

Sir Francis Galton, Natural Inheritance, London: Macmillan, 1889.

Correspondence analysis (CA) is an exploratory technique that displays the row and column
categories in a two-way contingency table as points in a graph, so that the positions of the points
represent the associations in the table. Mathematically, correspondence analysis is related to the
biplot, to canonical correlation, and to principal component analysis.

This technique finds scores for the row and column categories on a small number of dimensions
that account for the greatest proportion of the χ2 for association between the row and column
categories, just as principal components account for maximum variance of quantitative variables.
But CA does more—the scores provide a quantification of the categories, and have the property that
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they maximize the correlation between the row and column variables. For graphical display two or
three dimensions are typically used to give a reduced rank approximation to the data.

Correspondence analysis has a very large, multi-national literature and was rediscovered sev-
eral times in different fields and different countries. The method, in slightly different forms, is
also discussed under the names dual scaling, optimal scaling, reciprocal averaging, homogeneity
analysis, and canonical analysis of categorical data.

See Greenacre (1984) and Greenacre (2007) for an accessible introduction to CA methodology,
or Gifi (1981) and Lebart et al. (1984) for a detailed treatment of the method and its applications
from the Dutch and French perspectives. Greenacre and Hastie (1987) provide an excellent dis-
cussion of the geometric interpretation, while van der Heijden and de Leeuw (1985) and van der
Heijden et al. (1989) develop some of the relations between correspondence analysis and log-linear
methods for three-way and larger tables. Correspondence analysis is usually carried out in an ex-
ploratory, graphical way. Goodman (1981, 1985, 1986) has developed related inferential models,
the RC model (see Section 10.1.3) and the canonical correlation model, with close links to CA.

One simple development of CA is as follows: For a two-way table the scores for the row cat-
egories, namely X = {xim}, and column categories, Y = {yjm}, on dimension m = 1, . . . , M
are derived from a (generalized) singular value decomposition of (Pearson) residuals from inde-
pendence, expressed as dij/

√
n, to account for the largest proportion of the χ2 in a small number

of dimensions. This decomposition may be expressed as

dij√
n

=
nij −mij√
nmij

= XDλ Y
T =

M∑
m=1

λm xim yjm , (6.1)

where mij is the expected frequency and where Dλ is a diagonal matrix with elements λ1 ≥ λ2 ≥
· · · ≥ λM , and M = min(I − 1, J − 1). In M dimensions, the decomposition Eqn. (6.1) is exact.
For example, an I × 3 table can be depicted exactly in two dimensions when I ≥ 3. The useful
result for visualization purposes is that a rank-d approximation in d dimensions is obtained from the
first d terms on the right side of Eqn. (6.1). The proportion of the Pearson χ2 accounted for by this
approximation is

n
d∑
m

λ2m
/
χ2 .

The quantity χ2/n =
∑
i

∑
j d

2
ij/n is called the total inertia and is identical to the measure of

association known as Pearson’s mean-square contingency, the square of the φ coefficient.
Thus, correspondence analysis is designed to show how the data deviate from expectation when

the row and column variables are independent, as in the sieve diagram, association plot, and mosaic
display. However, the sieve, association, and mosaic plots depict every cell in the table, and for
large tables it may be difficult to see patterns. Correspondence analysis shows only row and column
categories as points in the two (or three) dimensions that account for the greatest proportion of
deviation from independence. The pattern of the associations can then be inferred from the positions
of the row and column points.

6.2 Simple correspondence analysis

6.2.1 Notation and terminology

Because Correspondence analysis grew up in so many homes, the notation, formulae, and terms
used to describe the method vary considerably. The notation used here generally follows Greenacre
(1984, 1997, 2007).

The descriptions here employ the following matrix and vector definitions:



6.2: Simple correspondence analysis 223

• N = {nij} is the I×J contingency table with row and column totals ni+ and n+j , respectively.
The grand total n++ is also denoted by n for simplicity.

• P = {pij} = N/n is the matrix of joint cell proportions, called the correspondence matrix.

• r =
∑
j pij = P1 is the row margin of P ; c =

∑
i pij = P T1 is the column margin. r and c

are called the row masses and column masses.

• Dr andDc are diagonal matrices with r and c on their diagonals, used as weights.

• R = D−1r P = {nij/n+j} is the matrix of row conditional probabilities, called row profiles.
Similarly, C = D−1c P T = {nij/ni+} is the matrix of column conditional probabilities or
column profiles.

• S = D
−1/2
r (P − rcT)D

−1/2
c is the matrix of standardized Pearson residuals from indepen-

dence (denoted dij in the introduction).

Two types of coordinates, X , Y for the row and column categories are defined, based on the
singular value decomposition (SVD) of S,

S = UDλV
T where UTU = V TV = I ,

and Dλ is the diagonal matrix of singular values λ1 ≥ λ2 ≥ · · · ≥ λM . U is the orthonormal
I ×M matrix of left singular vectors, and V is the J ×M matrix of right singular vectors.

The SVD of S is related to the eigenvalue–eigenvector decomposition of a square symmetric
matrix, in that SST = UD2

λU and STS = V D2
λV , so the values λ2 are the eigenvalues in both

cases and the singular vectors are the corresponding eigenvectors. In correspondence analysis, these
eigenvalues (squares of the singular values) are called the principal inertias, and are the values used
in the decomposition of the Pearson χ2 for the dimensions, χ2 = n

∑
m λ

2
m.

principal coordinates: The coordinates of the row (F ) and column (G) profiles with respect to
their own principal axes are defined so that the inertia along each axis is the corresponding
eigenvalue value, λm,

F = D−1/2r UD2
λ scaled so that F TDrF = D2

λ , (6.2)
G = D−1/2c V D2

λ scaled so that GTDcG = D2
λ . (6.3)

The joint plot in principal coordinates, F andG, is called the symmetric map because both row
and column profiles are overlaid in the same coordinate system.

standard coordinates: The standard coordinates (Φ,Γ) are a rescaling of the principal coordinates
to unit inertia along each axis,

Φ = D−1r U scaled so that ΦTDrΦ = I , (6.4)
Γ = D−1c V scaled so that ΓTDcΓ = I . (6.5)

These differ from the principal coordinates in Eqn. (6.2) and Eqn. (6.3) simply by the absence of
the scaling factors,D2

λ. An asymmetric map shows one set of points (say, the rows) in principal
coordinates and the other set in standard coordinates.

Thus, the weighted average of the squared principal coordinates for the rows or columns on a prin-
cipal axis equals the squared singular value, λ2 for that axis, whereas the weighted average of the
squared standard coordinates equals 1. The relative positions of the row or column points along any
axis is the same under either scaling, but the distances between points differ, because the axes are
weighted differentially in the two scalings.
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6.2.2 Geometric and statistical properties
We summarize here some geometric and statistical properties of the Correspondence analysis solu-
tions that are useful in interpretation.

nested solutions: Because they use successive terms of the SVD Eqn. (6.1), correspondence anal-
ysis solutions are nested, meaning that the first two dimensions of a three-dimensional solution
will be identical to the two-dimensional solution.

centroids at the origin: In both principal coordinates and standard coordinates the points repre-
senting the row and column profiles have their centroids (weighted averages) at the origin.
Thus, in CA plots, the origin represents the (weighted) average row profile and column profile.

reciprocal averages: CA assigns scores to the row and column categories such that the column
scores are proportional to the weighted averages of the row scores, and vice-versa.

chi-square distances: In principal coordinates, the row coordinates may be shown equal to the
row profiles D−1r P , rescaled by the inverse by the square-root of the column masses, D−1/2c .
Distances between two row profiles, Ri and Ri′ , are most sensibly defined as χ2 distances,
where the squared difference [Rij −Ri′j ]

2 is inversely weighted by the column frequency, to
account for the different relative frequency of the column categories. The rescaling by D−1/2c

transforms this weighted χ2 metric into ordinary Euclidean distance. The same is true of the
column principal coordinates.

interpretation of distances: In principal coordinates, the distance between two row points may
be interpreted as described above, and so may the distance between two column points. The
distance between a row and column point, however, does not have a clear distance interpretation.

residuals from independence: The distance between a row and column point do have a rough
interpretation in terms of residuals or the difference between observed and expected frequencies,
nij −mij . Two row (or column) points deviate from the origin (the average profile) when their
profile frequencies have similar values. A row point appears in a similar direction away from
the origin as a column point when nij −mij > 0, and in an opposite different direction from
that column point when the residual is negative.

Because of these differences in interpretations of distances, there are different possibilities for
graphical display. A joint display of principal coordinates for the rows and standard coordinates for
the columns (or vice-versa), sometimes called an asymmetric map, is suggested by Greenacre and
Hastie (1987) and by Greenacre (1989) as the plot with the most coherent geometric interpretation
(for the points in principal coordinates) and is sometimes used in the French literature.

Another common joint display is the symmetric map of the principal coordinates in the same
plot. This is the default in the ca package described below. In the authors’ opinion, this produces
better graphical displays, because both sets of coordinates are scaled with the same weights for each
axis. Symmetric plots are used exclusively in this book, but that should not imply that these plots
are universally preferred. Another popular choice is to avoid the possibility of misinterpretation by
making separate plots of the row and column coordinates.

6.2.3 R software for correspondence analysis
Correspondence analysis methods for computation and plotting are available in a number of R
packages including:

MASS: corresp(); the plot method calls biplot() for a 2-factor solution, using a a sym-
metric biplot factorization that scales the row and column points by the square roots of the the
singular values. There is also an mca() function for multiple correspondence analysis.
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ca: ca(); provides 2D plots via the plot.ca() method and interactive (rgl) 3D plots via
plot3d.ca(). This package is the most comprehensive in terms of plotting options for var-
ious coordinate types, plotting supplementary points (see Section 6.3.2), and other features. It
also provides mjca() for multiple and joint correspondence analysis of higher-way tables.

FactoMineR (Husson et al., 2015): CA(); provides a wide variety of measures for the quality of
the CA representation and many options for graphical display

These methods also differ in terms of the types of input they accept. For example, MASS::corresp()
handles matrices, data frames, and "xtabs" objects, but not "table" objects. ca() is the most gen-
eral, with methods for two-way tables, matrices, data frames, and "xtabs" objects. In the following,
we largely use the ca package.

EXAMPLE 6.1: Hair color and eye color
The script below uses the two-way table haireye from the HairEyeColor data, collapsed

over Sex. In this table, Hair colors form the rows, and Eye colors form the columns. By default,
ca() produces a two-dimensional solution. In this example, the complete, exact solution would
have M = min((I − 1), (J − 1)) = 3 dimensions, and you could obtain this using the argument
nd=3 in the call to ca().

> haireye <- margin.table(HairEyeColor, 1 : 2)
> library(ca)
> (haireye.ca <- ca(haireye))

Principal inertias (eigenvalues):
1 2 3

Value 0.208773 0.022227 0.002598
Percentage 89.37% 9.52% 1.11%

Rows:
Black Brown Red Blond

Mass 0.18243 0.48311 0.1199 0.2145
ChiDist 0.55119 0.15946 0.3548 0.8384
Inertia 0.05543 0.01228 0.0151 0.1508
Dim. 1 -1.10428 -0.32446 -0.2835 1.8282
Dim. 2 1.44092 -0.21911 -2.1440 0.4667

Columns:
Brown Blue Hazel Green

Mass 0.37162 0.3632 0.15710 0.10811
ChiDist 0.50049 0.5537 0.28865 0.38573
Inertia 0.09309 0.1113 0.01309 0.01608
Dim. 1 -1.07713 1.1981 -0.46529 0.35401
Dim. 2 0.59242 0.5564 -1.12278 -2.27412

In the printed output, the table labeled “Principal inertias (eigenvalues)” indicates that nearly
99% of the Pearson χ2 for association is accounted for by two dimensions, with most of that at-
tributed to the first dimension.

The summary method for "ca" objects gives a more nicely formatted display, showing a scree
plot of the eigenvalues, a portion of which is shown below.

> summary(haireye.ca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
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1 0.208773 89.4 89.4 **********************
2 0.022227 9.5 98.9 **
3 0.002598 1.1 100.0

-------- -----
Total: 0.233598 100.0

...

The Pearson χ2 for this table (given by chisq.test(haireye)) is 138.29. This value is n
(592) times the sum of the eigenvalues (0.2336) shown above.

The result returned by ca() can be plotted using the plot.ca()method. However, it is useful
to understand that ca() returns the CA solution in terms of standard coordinates, Φ (rowcoord)
and Γ (colcoord). We illustrate Eqn. (6.4) and Eqn. (6.5) using the components of the "ca" object
haireye.ca.

> # standard coordinates Phi (Eqn 6.4) and Gamma (Eqn 6.5)
> (Phi <- haireye.ca$rowcoord)

Dim1 Dim2 Dim3
Black -1.10428 1.44092 -1.08895
Brown -0.32446 -0.21911 0.95742
Red -0.28347 -2.14401 -1.63122
Blond 1.82823 0.46671 -0.31809

> (Gamma <- haireye.ca$colcoord)

Dim1 Dim2 Dim3
Brown -1.07713 0.59242 -0.423960
Blue 1.19806 0.55642 0.092387
Hazel -0.46529 -1.12278 1.971918
Green 0.35401 -2.27412 -1.718443

> # demonstrate orthogonality of std coordinates
> Dr <- diag(haireye.ca$rowmass)
> zapsmall(t(Phi) %*% Dr %*% Phi)

Dim1 Dim2 Dim3
Dim1 1 0 0
Dim2 0 1 0
Dim3 0 0 1

> Dc <- diag(haireye.ca$colmass)
> zapsmall(t(Gamma) %*% Dc %*% Gamma)

Dim1 Dim2 Dim3
Dim1 1 0 0
Dim2 0 1 0
Dim3 0 0 1

These standard coordinates are transformed internally within the plot function according to the
map argument, which defaults to map="symmetric", giving principal coordinates. The follow-
ing call to plot.ca() produces Figure 6.1.

> res <- plot(haireye.ca)

For use in further customizing such plots (as we will see in the next example), the function
plot.ca() returns (invisibly) the coordinates for the row and column points actually plotted,
which we saved above as res:
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Figure 6.1: Correspondence analysis solution for the hair color and eye color data.

> res

$rows
Dim1 Dim2

Black -0.50456 0.214820
Brown -0.14825 -0.032666
Red -0.12952 -0.319642
Blond 0.83535 0.069579

$cols
Dim1 Dim2

Brown -0.49216 0.088322
Blue 0.54741 0.082954
Hazel -0.21260 -0.167391
Green 0.16175 -0.339040

It is important to understand that in CA plots (and related biplots, Section 6.5), the interpretation
of distances between points (and angles between vectors) is meaningful. In order to achieve this,
the axes in such plots must be equated, meaning that the two axes are scaled so that the number of
data units per inch are the same for both the horizontal and vertical axes, or an aspect ratio = 1.1

The interpretation of the CA plot in Figure 6.1 is then as follows:

• Dimension 1, accounting for nearly 90% of the association between hair and eye color corre-
sponds to dark (left) vs. light (right) on both variables.

• Dimension 2 largely contrasts red hair and green eyes with the remaining categories, accounting
for an additional 9.5% of the Pearson χ2.

• With equated axes, and a symmetric map, the distances between row points and distances be-
tween column points are meaningful. Along Dimension 1, the eye colors could be considered

1In base R graphics, this is achieved with the plot() option asp=1.
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roughly equally spaced, but for the hair colors, Blond is quite different in terms of its frequency
profile.

4

EXAMPLE 6.2: Mental impairment and parents’ SES
In Example 4.3 we introduced the data set Mental, relating mental health status to parents’

SES. As in Example 4.7, we convert this to a two-way table, mental.tab, to conduct a corre-
spondence analysis.

> data("Mental", package="vcdExtra")
> mental.tab <- xtabs(Freq ~ ses + mental, data = Mental)

We calculate the CA solution, and save the result in mental.ca:

> mental.ca <- ca(mental.tab)
> summary(mental.ca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.026025 93.9 93.9 ***********************
2 0.001379 5.0 98.9 *
3 0.000298 1.1 100.0

-------- -----
Total: 0.027702 100.0
...

The scree plot produced by summary(mental.ca) shows that the association between men-
tal health and parents’ SES is almost entirely 1-dimensional, with 94% of the χ2 (45.98, with 15 df)
accounted for by Dimension 1.

We then plot the solution as shown below, giving Figure 6.2. For this example, it is useful to
connect the row points and the column points by lines, to emphasize the pattern of these ordered
variables.

> res <- plot(mental.ca, ylim = c(-.2, .2))
> lines(res$rows, col = "blue", lty = 3)
> lines(res$cols, col = "red", lty = 4)

The plot of the CA scores in Figure 6.2 shows that diagnostic mental health categories are
well-aligned with Dimension 1. The mental health scores are approximately equally spaced, except
that the two intermediate categories are a bit closer on this dimension than the extremes. The SES
categories are also aligned with Dimension 1, and approximately equally spaced, with the exception
of the highest two SES categories, whose profiles are extremely similar, suggesting that these two
categories could be collapsed.

Because both row and column categories have the same pattern on Dimension 1, we may in-
terpret the plot as showing that the profiles of both variables are ordered, and their relation can be
explained as a positive association between high parents’ SES and higher mental health status of
children. A mosaic display of these data (Exercise 6.5) would show a characteristic opposite corner
pattern of association.

From a modeling perspective, we might ask how strong is the evidence for the spacing of cate-
gories noted above. For example, we might ask whether assigning integer scores to the levels of SES
and mental impairment provides a simpler, but satisfactory account of their association. Questions
of this type can be explored in connection with loglinear models in Chapter 9.

4
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Figure 6.2: Correspondence analysis solution for the Mental health data.

EXAMPLE 6.3: Repeat victimization
The data set RepVict in the vcd package gives an 8× 8 table (from Fienberg (1980, Table 2-

8)) on repeat victimization for various crimes among respondents to a U.S. National Crime Survey.
A special feature of this data set is that row and column categories reflect the same crimes, so
substantial association is expected. Here we examine correspondence analysis results in a bit more
detail and also illustrate how to customize the displays created by plot(ca(...)).

> data("RepVict", package = "vcd")
> victim.ca <- ca(RepVict)
> summary(victim.ca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.065456 33.8 33.8 ********
2 0.059270 30.6 64.5 ********
3 0.029592 15.3 79.8 ****
4 0.016564 8.6 88.3 **
5 0.011140 5.8 94.1 *
6 0.007587 3.9 98.0 *
7 0.003866 2.0 100.0

-------- -----
Total: 0.193474 100.0

...

The results above show that, for this 8×8 table, 7 dimensions are required for an exact solution,
of which the first two account for 64.5% of the Pearson χ2. The lines below illustrate that the
Pearson χ2 is n times the sum of the squared singular values, n

∑
λ2i .
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> chisq.test(RepVict)

Pearson's Chi-squared test

data: RepVict
X-squared = 11100, df = 49, p-value <2e-16

> (chisq <- sum(RepVict) * sum(victim.ca$sv^2))

[1] 11131

The default plot produced by plot.ca(victim.ca) plots both points and labels for the row
and column categories. However, what we want to emphasize here is the relation between the same
crimes on the first and second occurrence.

To do this, we label each crime just once (using labels=c(2,0)) and connect the two points
for each crime by a line, using segments(), as shown in Figure 6.3. The addition of a legend()
makes the plot more easily readable.

> res <- plot(victim.ca, labels = c(2, 0))
> segments(res$rows[,1], res$rows[,2], res$cols[,1], res$cols[,2])
> legend("topleft", legend = c("First", "Second"), title = "Occurrence",
+ col = c("blue", "red"), pch = 16 : 17, bg = "gray90")
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Figure 6.3: 2D CA solution for the repeat victimization data. Lines connect the category points for
first and second occurrence to highlight these relations.

In Figure 6.3 it may be seen that most of the points are extremely close for the first and second
occurrence of a crime, indicating that the row profile for a crime is very similar to its corresponding
column profile, with Rape and Pickpocket as exceptions.
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In fact, if the table was symmetric, the row and column points in Figure 6.3 would be identical,
as can be easily demonstrated by analyzing a symmetric version.

> RVsym <- (RepVict + t(RepVict)) / 2
> RVsym.ca <- ca(RVsym)
> res <- plot(RVsym.ca)
> all.equal(res$rows, res$cols)

[1] TRUE

The first dimension appears to contrast crimes against the person (right) with crimes against
property (left), and it may be that the second dimension represents degree of violence associated
with each crime. The latter interpretation is consistent with the movement of Rape towards a higher
position and Pickpocket towards a lower one on this dimension.

4

6.2.4 Correspondence analysis and mosaic displays
For a two-way table, CA and mosaic displays give complementary views of the pattern of associ-
ation between the row and column variables, but both are based on the (Pearson) residuals from
independence. CA shows the row and column categories as points in a 2D (or 3D) space accounting
for the largest proportion of the Pearson χ2, while mosaics show the association by the pattern of
shading in the mosaic tiles. It is useful to compare them directly to see how associations can be
interpreted from these graphs.

EXAMPLE 6.4: TV viewing data
The data on television viewership from Hartigan and Kleiner (1984) was used as an example

of manipulating complex categorical data in Section 2.9. The main association here concerns how
viewership across days of the week varies by TV network, so we first collapse the TV data to a 5×3
two-way table.

> data("TV", package = "vcdExtra")
> TV2 <- margin.table(TV, c(1, 3))
> TV2

Network
Day ABC CBS NBC

Monday 2847 2923 2629
Tuesday 3110 2403 2568
Wednesday 2434 1283 2212
Thursday 1766 1335 5886
Friday 2737 1479 1998

In this case, the 2D CA solution is exact, meaning that two dimensions account for 100% of the
association.

> TV.ca <- ca(TV2)
> TV.ca

Principal inertias (eigenvalues):
1 2

Value 0.081934 0.010513
Percentage 88.63% 11.37%
...

The plot of this solution is shown in the left panel of Figure 6.4, using lines from the origin to
the category points for the networks.
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> res <- plot(TV.ca)
> segments(0, 0, res$cols[,1], res$cols[,2], col = "red", lwd = 2)
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Figure 6.4: CA plot and mosaic display for the TV viewing data. The days of the week in the
mosaic plot were permuted according to their order in the CA solution.

An analogous mosaic display, informed by the CA solution, is shown in the right panel of
Figure 6.4. Here, the days of the week are reordered according to their positions on the first CA
dimension, another example of effect ordering.

> days.order <- order(TV.ca$rowcoord[,1])
> mosaic(t(TV2[days.order,]), shade = TRUE, legend = FALSE,
+ labeling = labeling_residuals, suppress=0)

In the CA plot, you can see that the dominant dimension separates viewing on Thursday, with
the largest share of viewers watching NBC, from the other weekdays. In the mosaic plot, Thursday
stands out as the only day with a higher than expected frequency for NBC, and this is the largest
residual in the entire table. The second dimension in the CA plot separates CBS, with its greatest
proportion of viewers on Monday, from ABC, with greater viewership on Wednesday and Friday.

Emerson (1998, Fig. 2) gives a table listing the shows in each half-hour time slot. Could the
overall popularity of NBC on Thursday have been due to Friends or Seinfeld? An answer to this and
similar questions requires analysis of the three-way table (Exercise 6.9) and model-based methods
for polytomous outcome variables described in Section 8.3.

4

6.3 Multi-way tables: Stacking and other tricks

A three- or higher-way table can be analyzed by correspondence analysis in several ways. Multiple
correspondence analysis (MCA), described in Section 6.4, is an extension of simple correspondence
analysis that analyzes simultaneously all possible two-way tables contained within a multiway table.
Another approach, described here, is called stacking or interactive coding. This is a bit of a trick,
to force a multiway table into a two-way table for a standard correspondence analysis, but it is a
useful one.
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Figure 6.5: Stacking approach for a three-way table. Two of the table variables are combined
interactively to form the rows of a two-way table.

A three-way table of size I × J ×K can be sliced into I two-way tables, each J ×K. If the
slices are concatenated vertically, the result is one two-way table, of size (I×J)×K, as illustrated
in Figure 6.5. In effect, the first two variables are treated as a single composite variable with IJ
levels, which represents the main effects and interaction between the original variables that were
combined. Van der Heijden and de Leeuw (1985) discuss this use of correspondence analysis for
multi-way tables and show how each way of slicing and stacking a contingency table corresponds
to the analysis of a specified loglinear model. Like the mosaic display, this provides another way to
visualize the relations in a loglinear model.

In particular, for the three-way table with variables A,B,C that is reshaped as a table of size
(I × J) × K, the correspondence analysis solution analyzes residuals from the log-linear model
[AB][C]. That is, for such a table, the I × J rows represent the joint combinations of variables A
and B. The expected frequencies under independence for this table are

m[ij]k =
nij+ n++k

n
, (6.6)

which are the ML estimates of expected frequencies for the log-linear model [AB][C]. The χ2 that is
decomposed by correspondence analysis is the Pearson χ2 for this log-linear model. When the table
is stacked as I × (J ×K) or J × (I ×K), correspondence analysis decomposes the residuals from
the log-linear models [A][BC] and [B][AC], respectively, as shown in Table 6.1. In this approach,
only the associations in separate [ ] terms are analyzed and displayed in the correspondence analysis
maps. Van der Heijden and de Leeuw (1985) show how a generalized form of correspondence
analysis can be interpreted as decomposing the difference between two specific loglinear models,
so their approach is more general than is illustrated here.

6.3.1 Interactive coding in R

In the general case of an n-way table, the stacking approach is similar to that used by ftable()
and structable() in vcd as described in Section 2.5 to flatten multiway tables to a two-way,
printable form, where some variables are assigned to the rows and the others to the columns. Both
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Table 6.1: Each way of stacking a three-way table corresponds to a loglinear model

Stacking structure Loglinear model
(I × J)×K [AB][C]
I × (J ×K) [A][BC]
J × (I ×K) [B][AC]

ftable() and structable() have as.matrix() methods2 that convert their result into a
matrix suitable as input to ca().

With data in the form of a frequency data frame, you can easily create interactive coding using
interaction() or simply use paste() to join the levels of stacked variables together.

To illustrate, create a 4-way table of random Poisson counts (with constant mean, λ = 15) of
types of Pet, classified by Age, Color, and Sex.

> set.seed(1234)
> dim <- c(3, 2, 2, 2)
> tab <- array(rpois(prod(dim), 15), dim = dim)
> dimnames(tab) <- list(Pet = c("dog", "cat", "bird"),
+ Age = c("young", "old"),
+ Color = c("black", "white"),
+ Sex = c("male", "female"))

You can use ftable() to print this, with a formula that assigns Pet and Age to the columns
and Color and Sex to the rows.

> ftable(Pet + Age ~ Color + Sex, tab)

Pet dog cat bird
Age young old young old young old

Color Sex
black male 10 12 16 16 16 12

female 8 12 13 15 11 13
white male 18 11 12 18 13 20

female 13 13 16 15 12 15

Then, as.matrix() creates a matrix with the levels of the stacked variables combined with
some separator character. Using ca(pet.mat) would then calculate the CA solution for the
stacked table, analyzing only the associations in the loglinear model [Pet Age][Color Sex].3

> (pet.mat <- as.matrix(ftable(Pet + Age ~ Color + Sex, tab), sep = '.'))

Pet.Age
Color.Sex dog.young dog.old cat.young cat.old bird.young bird.old
black.male 10 12 16 16 16 12
black.female 8 12 13 15 11 13
white.male 18 11 12 18 13 20
white.female 13 13 16 15 12 15

With data in a frequency data frame, a similar result (as a frequency table) can be obtained using
interaction() as shown below. The result of xtabs() looks the same as pet.mat.

> tab.df <- as.data.frame(as.table(tab))
> tab.df <- within(tab.df,
+ {Pet.Age = interaction(Pet, Age)

2This requires at least R version 3.1.0 or vcd 1.3-2 or later.
3The result would not be at all interesting here. Why?
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+ Color.Sex = interaction(Color, Sex)
+ })
> xtabs(Freq ~ Color.Sex + Pet.Age, data = tab.df)

EXAMPLE 6.5: Suicide rates in Germany
To illustrate the use of correspondence analysis for the analysis for three-way tables, we use

data on suicide rates in West Germany classified by sex, age, and method of suicide used. The data,
from Heuer (1979, Table 1) have been discussed by Friendly (1991, 1994b), van der Heijden and
de Leeuw (1985), and others.

The original 2 × 17 × 9 table contains 17 age groups from 10 to 90 in 5-year steps and 9
categories of suicide method, contained in the frequency data frame Suicide in vcd, with table
variables sex, age, and method. To avoid extremely small cell counts and cluttered displays,
this example uses a reduced table in which age groups are combined in the variable age.group,
a factor with 15-year intervals except for the last interval, which includes ages 70–90; the methods
“toxic gas” and “cooking gas” were collapsed (in the variable method2) giving the 2× 5× 8 table
shown in the output below. These changes do not affect the general nature of the data or conclusions
drawn from them.

In this example, we decided to stack the combinations of age and sex, giving an analysis of
the loglinear model [AgeSex][Method], to show how the age–sex categories relate to method of
suicide.

In the case of a frequency data frame, it is quite simple to join two or more factors to form
the rows of a new two-way table. Here we use paste() to form a new, composite factor, called
age_sex here, abbreviating sex for display purposes.

> data("Suicide", package = "vcd")
> # interactive coding of sex and age.group
> Suicide <- within(Suicide, {
+ age_sex <- paste(age.group, toupper(substr(sex, 1, 1)))
+ })

Then, use xtabs() to construct the two-way table suicide.tab:

> suicide.tab <- xtabs(Freq ~ age_sex + method2, data = Suicide)
> suicide.tab

method2
age_sex poison gas hang drown gun knife jump other
10-20 F 921 40 212 30 25 11 131 100
10-20 M 1160 335 1524 67 512 47 189 464
25-35 F 1672 113 575 139 64 41 276 263
25-35 M 2823 883 2751 213 852 139 366 775
40-50 F 2224 91 1481 354 52 80 327 305
40-50 M 2465 625 3936 247 875 183 244 534
55-65 F 2283 45 2014 679 29 103 388 296
55-65 M 1531 201 3581 207 477 154 273 294
70-90 F 1548 29 1355 501 3 74 383 106
70-90 M 938 45 2948 212 229 105 268 147

The results of the correspondence analysis of this table are shown below:

> suicide.ca <- ca(suicide.tab)
> summary(suicide.ca)

Principal inertias (eigenvalues):
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dim value % cum% scree plot
1 0.096151 57.2 57.2 **************
2 0.059692 35.5 92.6 *********
3 0.008183 4.9 97.5 *
4 0.002158 1.3 98.8
5 0.001399 0.8 99.6
6 0.000557 0.3 100.0
7 6.7e-050 0.0 100.0

-------- -----
Total: 0.168207 100.0

...

It can be seen that 92.6% of the χ2 for this model is accounted for in the first two dimensions.
Plotting these gives the display shown in Figure 6.6.

> plot(suicide.ca)
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Figure 6.6: 2D CA solution for the stacked [AgeSex][Method] table of the suicide data.

Dimension 1 in the plot separates males (right) and females (left), indicating a large difference
between suicide profiles of males and females with respect to methods of suicide. The second
dimension is mostly ordered by age with younger groups at the bottom and older groups at the top.
Note also that the positions of the age groups are roughly parallel for the two sexes. Such a pattern
indicates that sex and age do not interact in this analysis.

The relation between the age–sex groups and methods of suicide can be approximately inter-
preted in terms of similar distance and direction from the origin, which represents the marginal row
and column profiles. Young males are more likely to commit suicide by gas or a gun, older males
by hanging, while young females are more likely to ingest some toxic agent and older females by
jumping or drowning. 4
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EXAMPLE 6.6: Suicide rates in Germany — mosaic plot
For comparison, it is useful to see how to construct a mosaic display showing the same associ-

ations for the loglinear model [AS][M ] as in the correspondence analysis plot. To do this, we first
construct the three-way table, suicide.tab3,

> suicide.tab3 <- xtabs(Freq ~ sex + age.group + method2, data = Suicide)

As discussed in Chapter 5, mosaic plots are sensitive both to the order of variables used in
successive splits, and to the order of levels within variables and are most effective when these
orders are chosen to reflect the some meaningful ordering.

In the present example, method2 is an unordered table factor, but Figure 6.6 shows that the
methods of suicide vary systematically with both sex and age, corresponding to dimensions 1 and
2, respectively. Here we choose to reorder the table according to the coordinates on Dimension 1.
We also delete the low-frequency "other" category to simplify the display.

> # methods, ordered as in the table
> suicide.ca$colnames

[1] "poison" "gas" "hang" "drown" "gun" "knife"
[7] "jump" "other"

> # order of methods on CA scores for Dim 1
> suicide.ca$colnames[order(suicide.ca$colcoord[,1])]

[1] "drown" "jump" "poison" "knife" "other" "hang"
[7] "gas" "gun"

> # reorder methods by CA scores on Dim 1
> suicide.tab3 <- suicide.tab3[, , order(suicide.ca$colcoord[,1])]
> # delete "other"
> suicide.tab3 <- suicide.tab3[,, -5]
> ftable(suicide.tab3)

method2 drown jump poison knife hang gas gun
sex age.group
male 10-20 67 189 1160 47 1524 335 512

25-35 213 366 2823 139 2751 883 852
40-50 247 244 2465 183 3936 625 875
55-65 207 273 1531 154 3581 201 477
70-90 212 268 938 105 2948 45 229

female 10-20 30 131 921 11 212 40 25
25-35 139 276 1672 41 575 113 64
40-50 354 327 2224 80 1481 91 52
55-65 679 388 2283 103 2014 45 29
70-90 501 383 1548 74 1355 29 3

To construct the mosaic display for the same model analyzed by correspondence analysis, we
use the argument expected=~age.group*sex + method2 to supply the model formula.
For this large table, it is useful to tweak the labels for the method2 variable to reduce overplotting;
the labeling_args argument provides many options for customizing strucplot displays.

> library(vcdExtra)
> mosaic(suicide.tab3, shade = TRUE, legend = FALSE,
+ expected = ~ age.group * sex + method2,
+ labeling_args = list(abbreviate_labs = c(FALSE, FALSE, 5)),
+ rot_labels = c(0, 0, 0, 90))

This figure (Figure 6.7) again shows the prevalence of gun and gas among younger males and
decreasing with age, whereas use of hang increases with age. For females, these three methods are
used less frequently, whereas poison, jump, and drown occur more often. You can also see that
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Figure 6.7: Mosaic display showing deviations from the model [AgeSex][Method] for the suicide
data.

for females the excess prevalence of these high-frequency methods varies somewhat less with age
than it does for males.

4

6.3.2 Marginal tables and supplementary variables
An n-way table in frequency form or case form is automatically collapsed over factors that are not
listed in the call to xtabs()when creating the table input for ca(). The analysis gives a marginal
model for the categorical variables that are listed.

The positions of the categories of the omitted variables may nevertheless be recovered, by treat-
ing them as supplementary variables, given as additional rows or columns in the two-way table. A
supplementary variable is ignored in finding the CA solution, but its categories are then projected
into that space. This is another useful trick to extend traditional CA to higher-way tables.

To illustrate, the code below lists only the age and method2 variables, and hence produces an
analysis collapsed over sex. This ignores not only the effect of sex itself, but also all associations
of age and method with sex, which are substantial. We don’t show the ca() result or the plot yet.

> # two way, ignoring sex
> suicide.tab2 <- xtabs(Freq ~ age.group + method2, data = Suicide)
> suicide.tab2

method2
age.group poison gas hang drown gun knife jump other

10-20 2081 375 1736 97 537 58 320 564
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25-35 4495 996 3326 352 916 180 642 1038
40-50 4689 716 5417 601 927 263 571 839
55-65 3814 246 5595 886 506 257 661 590
70-90 2486 74 4303 713 232 179 651 253

> suicide.ca2 <- ca(suicide.tab2)

To treat the levels of sex as supplementary points, we calculate the two-way table of sex and
method, and append this to the suicide.tab2 as additional rows:

> # relation of sex and method
> suicide.sup <- xtabs(Freq ~ sex + method2, data = Suicide)
> suicide.tab2s <- rbind(suicide.tab2, suicide.sup)

In the call to ca(), we then indicate these last two rows as supplementary:

> suicide.ca2s <- ca(suicide.tab2s, suprow = 6 : 7)
> summary(suicide.ca2s)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.060429 93.9 93.9 ***********************
2 0.002090 3.2 97.1 *
3 0.001479 2.3 99.4 *
4 0.000356 0.6 100.0

-------- -----
Total: 0.064354 100.0

...

This CA analysis has the same total Pearson chi-square, χ2(28) = 3422.5, as the result of
chisq.test(suicide.tab2). However, the scree plot display above shows that the associa-
tion between age and method is essentially one-dimensional, but note also that dimension 1 (“age–
method”) in this analysis has nearly the same inertia (0.0604) as the second dimension (0.0596) in
the analysis of the stacked table. We plot the CA results as shown below (see Figure 6.8), and add
a line connecting the supplementary points for sex.

> res <- plot(suicide.ca2s, pch = c(16, 15, 17, 24))
> lines(res$rows[6 : 7,])
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Figure 6.8: 2D CA solution for the [Age] [Method] marginal table. Category points for Sex are
shown as supplementary points.
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Comparing this graph with Figure 6.6, you can see that ignoring sex has collapsed the differences
between males and females, which were the dominant feature of the analysis including sex. The
dominant feature in Figure 6.8 is the Dimension 1 ordering of both age and method. However, as in
Figure 6.6, the supplementary points for sex point toward the methods that are more prevalent for
females and males.

6.4 Multiple correspondence analysis

Multiple correspondence analysis (MCA) is designed to display the relationships of the categories
of two or more discrete variables, but it is best used for multiway tables where the extensions of
classical CA described in Section 6.3 do not suffice. Again, this is motivated by the desire to provide
an optimal scaling of categorical variables, giving scores for the discrete variables in an n-way table
with desirable properties, and which can be plotted to visualize the relations among the category
points.

The most typical development of MCA starts by defining indicator (“dummy”) variables for
each category and reexpresses the n-way contingency table in the form of a cases-by-variables
indicator matrix, Z. Simple correspondence analysis for a two-way table can, in fact, be derived as
the canonical correlation analysis of the indicator matrix.

Unfortunately, the generalization to more than two variables follows a somewhat different path,
so that simple CA does not turn out to be precisely a special case of MCA in some respects, partic-
ularly in the decomposition of an interpretable χ2 over the dimensions in the visual representation.

Nevertheless, MCA does provide a useful graphic portrayal of the bivariate relations among any
number of categorical variables, and has close relations to the mosaic matrix (Section 5.6). If its
limitations are understood, it is helpful in understanding large, multivariate categorical data sets, in
a similar way to the use of scatterplot matrices and dimension-reduction techniques (e.g., principal
component analysis) for quantitative data.

6.4.1 Bivariate MCA
For the hair color–eye color data, the indicator matrix Z has 592 rows and 4 + 4 = 8 columns. The
columns refer to the eight categories of hair color and eye color and the rows to the 592 students in
Snee’s 1974 sample.

For simplicity, we show the calculation of the indicator matrix below in frequency form, using
model.matrix() to compute the dummy (0/1) variables for the levels of hair color (Hair1–
Hair4) and eye color (Eye1–Eye4).

> haireye.df <- cbind(
+ as.data.frame(haireye),
+ model.matrix(Freq ~ Hair + Eye, data=haireye,
+ contrasts.arg=list(Hair=diag(4), Eye=diag(4)))[,-1]
+ )
> haireye.df

Hair Eye Freq Hair1 Hair2 Hair3 Hair4 Eye1 Eye2 Eye3 Eye4
1 Black Brown 68 1 0 0 0 1 0 0 0
2 Brown Brown 119 0 1 0 0 1 0 0 0
3 Red Brown 26 0 0 1 0 1 0 0 0
4 Blond Brown 7 0 0 0 1 1 0 0 0
5 Black Blue 20 1 0 0 0 0 1 0 0
6 Brown Blue 84 0 1 0 0 0 1 0 0
7 Red Blue 17 0 0 1 0 0 1 0 0
8 Blond Blue 94 0 0 0 1 0 1 0 0
9 Black Hazel 15 1 0 0 0 0 0 1 0
10 Brown Hazel 54 0 1 0 0 0 0 1 0
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11 Red Hazel 14 0 0 1 0 0 0 1 0
12 Blond Hazel 10 0 0 0 1 0 0 1 0
13 Black Green 5 1 0 0 0 0 0 0 1
14 Brown Green 29 0 1 0 0 0 0 0 1
15 Red Green 14 0 0 1 0 0 0 0 1
16 Blond Green 16 0 0 0 1 0 0 0 1

Thus, the first row in haireye.df represents the 68 individuals having black hair (Hair1=1)
and brown eyes (Eye1=1). The indicator matrix Z is then computed by replicating the rows in
haireye.df according to the Freq value, using the function expand.dft. The result has 592
rows and 8 columns.

> Z <- expand.dft(haireye.df)[,-(1:2)]
> vnames <- c(levels(haireye.df$Hair), levels(haireye.df$Eye))
> colnames(Z) <- vnames
> dim(Z)

[1] 592 8

Note that if the indicator matrix is partitioned as Z = [Z1,Z2], corresponding to the two sets
of categories, then the contingency table is given byN = ZT

1Z2.

> (N <- t(as.matrix(Z[,1:4])) %*% as.matrix(Z[,5:8]))

Brown Blue Hazel Green
Black 68 20 15 5
Brown 119 84 54 29
Red 26 17 14 14
Blond 7 94 10 16

With this setup, MCA can be described as the application of the simple correspondence analysis
algorithm to the indicator matrix Z. This analysis would yield scores for the rows of Z (the cases),
usually not of direct interest, and for the columns (the categories of both variables). As in simple
CA, each row point is the weighted average of the scores for the column categories, and each column
point is the weighted average of the scores for the row observations.4

Consequently, the point for any category is the centroid of all the observations with a response
in that category, and all observations with the same response pattern coincide. As well, the origin
reflects the weighted average of the categories for each variable. As a result, category points with
low marginal frequencies will be located further away from the origin, while categories with high
marginal frequencies will be closer to the origin. For a binary variable, the two category points
will appear on a line through the origin, with distances inversely proportional to their marginal
frequencies.

EXAMPLE 6.7: Hair color and eye color
For expository purposes, we illustrate the analysis of the indicator matrix below for the hair

color–eye color data using ca(), rather than the function mjca(), which is designed for a more
general approach to MCA.

> Z.ca <- ca(Z)
> res <- plot(Z.ca, what = c("none", "all"))

In the call to plot.ca, the argument what is used to suppress the display of the row points
for the cases. The plot shown in Figure 6.9 is an enhanced version of this basic plot.

4Note that, in principle, this use of an indicator matrix could be extended to three (or more) variables. That extension is
more easily described using an equivalent form, the Burt matrix, described in Section 6.4.2.
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Figure 6.9: Correspondence analysis of the indicator matrix Z for the hair color–eye color data.
The category points are joined separately by lines for the hair color and eye color categories.

Dim1 Dim2 factor levels
1 -0.94250 1.09220 Hair Black
2 -0.27693 -0.16608 Hair Brown
3 -0.24194 -1.62513 Hair Red
4 1.56039 0.35376 Hair Blond
5 -0.91933 0.44905 Eye Brown
6 1.02254 0.42176 Eye Blue
7 -0.39712 -0.85105 Eye Hazel
8 0.30215 -1.72375 Eye Green

Comparing Figure 6.9 with Figure 6.1, we see that the general pattern of the hair color and eye
color categories is the same in the analysis of the contingency table (Figure 6.1) and the analysis
of the indicator matrix (Figure 6.9), except that the axes are scaled differently—the display has
been stretched along the second (vertical) dimension. The interpretation is the same: Dimension 1
reflects a dark–light ordering of both hair and eye colors, and Dimension 2 reflects something that
largely distinguishes red hair and green eyes from the other categories.

Indeed, it can be shown (Greenacre, 1984, 2007) that the two displays are identical, except for
changes in scales along the axes. There is no difference at all between the displays in standard
coordinates. Greenacre (1984, pp. 130–134) describes the precise relations between the geometries
of the two analyses.

4

Aside from the largely cosmetic difference in relative scaling of the axes, a major difference
between analysis of the contingency table and analysis of the indicator matrix is in the decompo-
sition of principal inertia and corresponding χ2 contributions for the dimensions. The plot axes
in Figure 6.9 indicate 24.3% and 19.2% for the contributions of the two dimensions, whereas Fig-
ure 6.1 shows 89.4% and 9.5%. This difference is the basis for the more general development of
MCA methods and is reflected in the mcja() function illustrated later in this chapter. But first,
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we describe a second approach to extending simple CA to the multivariate case based on the Burt
matrix.

6.4.2 The Burt matrix
The same solution for the category points as in the analysis of the indicator matrix may be obtained
more simply from the so-called Burt matrix (Burt, 1950),

B = ZTZ =

[
N1 N
NT N2

]
,

where N1 and N2 are diagonal matrices containing the marginal frequencies of the two variables
(the column sums of Z1 and Z2). In this representation, the contingency table of the two variables,
N , appears in the off-diagonal block in this equation. This calculation is shown below.

> Burt <- t(as.matrix(Z)) %*% as.matrix(Z)
> rownames(Burt) <- colnames(Burt) <- vnames
> Burt

Black Brown Red Blond Brown Blue Hazel Green
Black 108 0 0 0 68 20 15 5
Brown 0 286 0 0 119 84 54 29
Red 0 0 71 0 26 17 14 14
Blond 0 0 0 127 7 94 10 16
Brown 68 119 26 7 220 0 0 0
Blue 20 84 17 94 0 215 0 0
Hazel 15 54 14 10 0 0 93 0
Green 5 29 14 16 0 0 0 64

The standard coordinates from an analysis of the Burt matrix B are identical to those of Z.
(However, the singular values of B are the squares of those of Z.) Then, the following code, using
the Burt matrix produces the same display of the category points for hair color and eye color as
shown for the indicator matrix Z in Figure 6.9.

> Burt.ca <- ca(Burt)
> plot(Burt.ca)

6.4.3 Multivariate MCA
The coding of categorical variables in an indicator matrix and the relationship to the Burt matrix
provides a direct and natural way to extend this analysis to more than two variables. If there are Q
categorical variables, and variable q has Jq categories, then the Q-way contingency table, of size
J =

∏Q
q=1 Jq = J1 × J2 × · · · × JQ, with a total of n = n++··· observations, may be represented

by the partitioned (n× J) indicator matrix [Z1Z2 . . . ZQ].
Then the Burt matrix is the symmetric partitioned matrix

B = ZTZ =


N1 N12 · · · N1Q

N21 N2 · · · N2Q

...
...

. . .
...

NQ1 NQ2 · · · NQ

 , (6.7)

where again the diagonal blocks Ni contain the one-way marginal frequencies. The off-diagonal
blocksNij contain the bivariate marginal contingency tables for each pair (i, j) of variables.

Classical MCA (see, e.g., Greenacre (1984), Gower and Hand (1996)) can then be defined as a
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singular value decomposition of the matrixB, which produces scores for the categories of all vari-
ables so that the greatest proportion of the bivariate, pairwise associations in all blocks (including
the diagonal blocks) is accounted for in a small number of dimensions.

In this respect, MCA resembles multivariate methods for quantitative data based on the joint
bivariate correlation or covariance matrix (Σ) and there is some justification for regarding the Burt
matrix as the categorical analog of Σ.5

There is a close connection between this analysis and the bivariate mosaic matrix (Section 5.6):
The mosaic matrix displays the residuals from independence for each pair of variables, and thus
provides a visual representation of the Burt matrix. The one-way margins shown (by default) in the
diagonal cells reflect the diagonal matrices Ni in Eqn. (6.7). The total amount of shading in all
the individual mosaics portrays the total pairwise associations decomposed by MCA. See Friendly
(1999a) for further details.

For interpretation of MCA plots, we note the following relations (Greenacre, 1984, Section
5.2):6

• The inertia contributed by a given variable increases with the number of response categories.
• The centroid of the categories for each discrete variable is at the origin of the display.
• For a particular variable, the inertia contributed by a given category increases as the marginal

frequency in that category decreases. Low frequency points therefore appear further from the
origin.

• The category points for a binary variable lie on a line through the origin. The distance of each
point to the origin is inversely related to the marginal frequency.

EXAMPLE 6.8: Marital status and pre- and extramarital sex
The data on the relation between marital status and reported premarital and extramarital sex was

explored earlier using mosaic displays in Example 5.9 and Example 5.13.
Using the ca package, an MCA analysis of the PreSex data is carried out using mjca(). This

function typically takes a data frame in case form containing the factor variables, but converts a table
to this form. This example analyzes the Burt matrix calculated from the PreSex data, specified as
lambda="Burt"

> data("PreSex", package = "vcd")
> PreSex <- aperm(PreSex, 4:1) # order variables G, P, E, M
> presex.mca <- mjca(PreSex, lambda = "Burt")
> summary(presex.mca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.149930 53.6 53.6 *************
2 0.067201 24.0 77.6 ******
3 0.035396 12.6 90.2 ***
4 0.027365 9.8 100.0 **

-------- -----
Total: 0.279892 100.0
...

The output from summary() seems to show that 77.6% of the total inertia is accounted for in
two dimensions. A basic, default plot of the MCA solution is provided by the plot() method for
"mjca" objects.

5For multivariate normal data, however, the mean vector and covariance matrix are sufficient statistics, so all higher-way
relations are captured in the covariance matrix. This is not true of the Burt matrix. Moreover, the covariance matrix is
typically expressed in terms of mean-centered variables, while the Burt matrix involves the marginal frequencies. A more
accurate statement is that the uncentered covariance matrix is analogous to the Burt matrix.

6This book, now out of print, is available for free download at http://www.carme-n.org/.

http://www.carme-n.org/
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> plot(presex.mca)

This plotting method is not very flexible in terms of control of graphical parameters or the ability
to add additional annotations (labels, lines, legend) to ease interpretation. Instead, we use the plot
method to create an empty plot (with no points or labels), and return the calculated plot coordinates
(res) for the categories. A bit of processing of the coordinates provides the customized display
shown in Figure 6.10.

> # plot, but don't use point labels or points
> res <- plot(presex.mca, labels = 0, pch = ".", cex.lab = 1.2)
>
> # extract factor names and levels
> coords <- data.frame(res$cols, presex.mca$factors)
> nlev <- presex.mca$levels.n
> fact <- unique(as.character(coords$factor))
>
> cols <- c("blue", "red", "brown", "black")
> points(coords[,1:2], pch=rep(16:19, nlev), col=rep(cols, nlev), cex=1.2)
> text(coords[,1:2], label=coords$level, col=rep(cols, nlev), pos=3,
+ cex=1.2, xpd=TRUE)
> lwd <- c(2, 2, 2, 4)
> for(i in seq_along(fact)) {
+ lines(Dim2 ~ Dim1, data = coords, subset = factor==fact[i],
+ lwd = lwd[i], col = cols[i])
+ }
>
> legend("bottomright",
+ legend = c("Gender", "PreSex", "ExtraSex", "Marital"),
+ title = "Factor", title.col = "black",
+ col = cols, text.col = cols, pch = 16:19,
+ bg = "gray95", cex = 1.2)

Dimension 1 (53.6%)

D
im

en
si

on
 2

 (2
4%

)

0.0 0.5 1.0

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

�

�

�

�

Men

Women

No

Yes

No

Yes
Divorced

Married

�

�

Factor
Gender
PreSex
ExtraSex
Marital

Figure 6.10: MCA plot of the Burt matrix for the PreSex data. The category points are joined
separately by lines for the factor variables.
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As indicated above, the category points for each factor appear on lines through the origin, with
distances inversely proportional to their marginal frequencies. For example, the categories for No
premarital and extramarital sex are much larger than the corresponding Yes categories, so the former
are positioned closer to the origin. In contrast, the categories of gender and marital status are more
nearly equal marginally.

Another aspect of interpretation of Figure 6.10 concerns the alignment of the lines for different
factors. The positions of the category points on Dimension 1 suggest that women are less likely to
have had pre-marital and extra-marital sex and that still being married is associated with the absence
of pre- and extra-marital sex. As well, the lines for gender and marital status are nearly at right
angles, suggesting that these variables are unassociated. This interpretation is more or less correct,
but it is only approximate in this MCA scaling of the coordinate axes. An alternative scaling, based
on a biplot representation is described in Section 6.5.

If you compare the MCA result in Figure 6.10 with the mosaic matrix in Figure 5.23, you will
see that they are both showing the bivariate pairwise associations among these variables, but in
different ways. The mosaic plots show the details of marginal and joint frequencies together with
residuals from independence for each 2×2 marginal subtable. The MCA plot using the Burt matrix
summarizes each category point in terms of a 2D representation of contributions to total inertia
(association). 4

6.4.3.1 Inertia decomposition

The transition from simple CA to MCA is straightforward in terms of the category scores derived
from the indicator matrix Z or the Burt matrix, B. It is less so in terms of the calculation of
total inertia, and therefore in the chi-square values and corresponding percentages of association
accounted for in some number of dimensions.

In simple CA, the total inertia is χ2/n, and it therefore makes sense to talk of percentage of
association accounted for by each dimension. But in MCA of the indicator matrix, the total inertia,∑
λ2, is simply (J −Q)/Q, because the inertia of each subtable, Zi, is equal to its dimensionality,

Ji − 1, and the total inertia of an indicator matrix is the average of the inertias of its subtables.
Consequently, the average inertia per dimension is 1/Q, and it is common to interpret only those
dimensions that exceed this average (analogous to the use of 1 as a threshold for eigenvalues in
principal components analysis).

To more adequately reflect the percentage of association in MCA, Greenacre (1990), revising
an earlier proposal by Benzécri (1977), suggested the calculation of adjusted inertia, which ignores
the contributions of the diagonal blocks in the Burt matrix,

(λ?i )
2 =

[
Q

Q− 1
(λZi −

1

Q
)

]2
(6.8)

as the principal inertia due to the dimensions with (λZ)2 > 1/Q. This adjustment expresses the
contribution of each dimension as (λ?i )

2/
∑

(λ?i )
2, with the summation over only dimensions with

(λZ)2 > 1/Q.
A related method, also handled by mjca(), is joint correspondence analysis (Greenacre, 1994,

Greenacre, 2007, Chapter 19), an iterative method that replaces the diagonal blocks of the Burt
matrix with values that minimize their impact on inertia. Unlike MCA, solutions in JCA are not
nested, however.

EXAMPLE 6.9: Survival on the Titanic
An MCA analysis of the Titanic data is carried out using mjca() as shown below.
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> titanic.mca <- mjca(Titanic)

mjca() allows different scaling methods for the contributions to inertia of the different dimen-
sions. The default (lambda="adjusted"), used here, is the adjusted inertias as in Eqn. (6.8).

> summary(titanic.mca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.067655 76.8 76.8 ***********************
2 0.005386 6.1 82.9 **
3 00000000 0.0 82.9

-------- -----
Total: 0.088118
...

Using similar code to that used in Example 6.8, Figure 6.11 shows an enhanced version of the
default plot that connects the category points for each factor by lines using the result returned by the
plot() function.
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Figure 6.11: MCA plot of the Titanic data. The category points are joined separately by lines for
the factor variables.

In this plot, the points for each factor have the property that the sum of coordinates on each
dimension, weighted inversely by the marginal proportions, equals zero. Thus high-frequency cate-
gories (e.g., Adult and Male) are close to the origin.
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The first dimension is perfectly aligned with gender, and also strongly aligned with Survival.
The second dimension pertains mainly to Class and Age effects. Consider those points that differ
from the origin most similarly (in distance and direction) to the point for Survived (“Yes”); this
gives the interpretation that survival was associated with being female or upper class or (to a lesser
degree) being a child.

4

6.5 Biplots for contingency tables

Like correspondence analysis, the biplot (Bradu and Gabriel, 1978, Gabriel, 1971, 1980, 1981,
Gower et al., 2011) is a visualization method that uses the SVD to display a matrix in a low-
dimensional (usually 2-dimensional) space. They differ in the relationships in the data that are
portrayed, however:

• In correspondence analysis the (weighted, χ2) distances between row points and distances be-
tween column points are designed to reflect differences between the row profiles and column
profiles.

• In the biplot, on the other hand, row and column points are represented by vectors from the
origin such that the projection (inner product) of the vector ai for row i on bj for column j
approximates the data element yij ,

Y ≈ ABT ⇐⇒ yij ≈ aT
i bj . (6.9)

Geometrically, Eqn. (6.9) may be described as approximating the data value yij by the projection
of the end point of vector ai on bj (and vice-versa), as shown in Figure 6.12.

||a|| cos θ

a

b
θ

||a
||

Figure 6.12: The scalar product of vectors of two points from the origin is the length of the projec-
tion of one vector on the other.

6.5.1 CA bilinear biplots

As in CA, there are a number of different representations of coordinates for row and column points
for a contingency table within a biplot framework. One set of connections between CA and the
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biplot can be seen through the reconstitution formula, giving the decomposition of the correspon-
dence matrix P = N/n in terms of the standard coordinates Φ and Γ, defined in Eqn. (6.4) and
Eqn. (6.5) as:

pij = ricj

(
1 +

M∑
m=1

√
λmφimγjm

)
, (6.10)

or, in matrix terms,
P = Dr(11T + ΦD

1/2
λ ΓT)Dc . (6.11)

The CA solution approximates this by a sum over d � M dimensions, or by using only the first d
(usually 2) columns of Φ and Γ.

Eqn. (6.10) can be re-written in biplot scalar form as(
pij
ricj

)
− 1 ≈

d∑
m=1

(
√
λmφim)γjm =

d∑
m=1

fimγjm (6.12)

where fim = (
√
λmφim) gives the principal coordinates of the row points. The left-hand side

of Eqn. (6.12) contains the contingency ratios, pij/ricj , of the observed cell probabilities to their
expected values under independence. This shows that an asymmetric CA plot of row principal
coordinates F and the column standard coordinates Γ is a biplot that approximates the deviations
of the contingency ratios from their values under independence.

In the ca package, this plot is obtained by specifying map="rowprincipal" in the call to
plot(), or map="colprincipal" to plot the column points in principal coordinates. It is
typical in such biplots to display one set of coordinates as points and the other as vectors from the
origin, as controlled by the arrows argument, so that one can interpret the data values represented
as approximated by the projections of the points on the vectors.

Two other types of asymmetric “maps” are also defined with different scalings that turn out
to have better visual properties in terms of representing the relations between the row and column
categories, particularly when the strength of association (inertia) in the data is low.

• The option map="rowgab" (or map="colgab") gives a biplot form proposed by Gabriel
and Odoroff (1990) with the rows (columns) shown in principal coordinates and the columns
(rows) in standard coordinates multiplied by the mass cj (ri) of the corresponding point.

• The contribution biplot for CA (Greenacre, 2013), with the option map="rowgreen" (or
map="colgreen") provides a reconstruction of the standardized residuals from indepen-
dence, using the points in standard coordinates multiplied by the square root of the correspond-
ing masses. This has the nice visual property of showing more directly the contributions of the
vectors to the low-dimensional solution.

EXAMPLE 6.10: Suicide rates in Germany — biplot
To illustrate the biplot representation, we continue with the data on suicide rates in Germany

from Example 6.5, using the stacked table suicide.tab comprised of the age–sex combinations
as rows and methods of suicide as columns.

> suicide.tab <- xtabs(Freq ~ age_sex + method2, data = Suicide)
> suicide.ca <- ca(suicide.tab)

Using this result, suicide.ca, in the call to plot() below, we use map="colgreen",
and vectors represent the methods of suicide, as shown in Figure 6.13.
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> plot(suicide.ca, map = "colgreen", arrows = c(FALSE, TRUE))
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Figure 6.13: CA biplot of the suicide data using the contribution biplot scaling. Associations
between the age–sex categories and the suicide methods can be read as the projections of the points
on the vectors. The lengths of the vectors for the suicide categories reflect their contributions to this
representation in a 2D plot.

The interpretation of the row points for the age–sex categories is similar to what we saw earlier
in Figure 6.6. But now, the vectors for the suicide categories reflect the contributions of those
methods to the representation of association. Thus, the methods drown, gun, and gas have large
contributions, while knife, hang, and poison are relatively small. Moreover, the projections
of the points for the age–sex combinations on the method vectors reflect the standardized residuals
from independence.

The most comprehensive modern treatment of biplot methodology is the book Understanding
Biplots (Gower et al., 2011). Together with the book, they provide an R package, UBbipl (le Roux
and Lubbe, 2013), that is capable of producing an astounding variety of high-quality plots. Unfor-
tunately, that package is only available on their publisher’s web site,7 and you need the book to be
able to use it because all the documentation is in the book. Nevertheless, we illustrate the use of the
cabipl() function to produce the version of the CA biplot shown in Figure 6.14.

7http://www.wiley.com/legacy/wileychi/gower/material.html.

http://www.wiley.com/legacy/wileychi/gower/material.html
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> library(UBbipl)
> cabipl(as.matrix(suicide.tab),
+ axis.col = gray(.4), ax.name.size = 1,
+ ca.variant = "PearsonResA",
+ markers = FALSE,
+ row.points.size = 1.5,
+ row.points.col = rep(c("red", "blue"), 4),
+ plot.col.points = FALSE,
+ marker.col = "black", marker.size = 0.8,
+ offset = c(2, 2, 0.5, 0.5),
+ offset.m = rep(-0.2, 14),
+ output = NULL)
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Figure 6.14: CA biplot of the suicide data, showing calibrated axes for the suicide methods.

This plot uses ca.variant = "PearsonResA" to specify that the biplot is to approximate
the standardized Pearson residuals by the inner product of each row point on the vector for the
column point for the suicide methods, as also in Figure 6.13. However, Figure 6.14 represents the
methods as calibrated axis lines, designed to be read as scales for the projections of the row points
(age–sex) on the methods. The UBbipl package has a huge number of options for controlling the
details of the biplot display. See Gower et al. (2011, Ch. 2) for all the details.
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