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Abetract-Interspeci relationships between the instantaneous rate of natural mortality of fish 

in a natural population end its surrogates are useful for studies of their population dynamica. In 

this paper, I derive interspecific models for the instantaneous rate of natural mortality of animals 

in a natural population aa a function of age-, length-, and mass-based surrogates, demonstrate their 
relationships with exlsting interspecific models, and fit them into data from three groupe of animals. 

At temporal equilibrium, and for the most stable distribution of individuals of a population, the sum 

of the population’s instantaneous ratea of natural and fishing mortalities la in inverse proportion to its 

characteristic age or app roximately to its mean age, thereby decreasing with its obeerved maxhnum 

age and increasing linearly with the rate of its individual’s growth in length or mem. Fitting of 

these age-, length-, and mass-based models to data from cetaceans, fishes, and benthic invertebrates 

showed that the instantaneous rate of natural mortality is 4.7725 (f0.1365) timee the reciprocal 

of the observed maximum age of a cetacean population, 1.2718 (f0.1944) timea the growth rate 

of individuals in a fish population, and 2.4825 (zkO.1262) times the growth rate of individuals in a 

population of benthic invertebrates. @I 2001 Elsevier Science Ltd. All rights reserved. 

Keywords-Natural mortality, Calculation from surrogates, Models. 

INTRODUCTION 

The instantaneous rate of natural mortality is a fundamental quantity of a natural population of 

animals and c8n be calculated from the number of deaths in the population over time. Unfortu- 

nately, in most cases, neither the time of death of an individual, nor the number of deaths over 

time can be observed. Consequently, it c&n only be estimated from indirect information. 

Many intraspecific and several interspecific models are available for this purpose. Interspecific 
models represent the instantaneous rate of natural mortality of an animal population 8s a func- 

tion of its surrogates and provides a useful means for its calculation, especially in the absence 
of detailed intraspecific data [l-7]. In this paper, I derive a new set of interspecific models, 

demonstrate their relationships with existing ones, and fit them into data from three groups of 
animals. 
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MODEL FOR 
THE INSTANTANEOUS RATE OF 
TOTAL MORTALITY F(a, t) + M(a, t) 

The instantaneous rate of natural mortality of an animal population is a population character- 
istic, whereas its surrogates are usually characteristics of the individuals in the population. To 
establish a relationship, for a suite of species, between the instantaneous rate of natural mortal- 
ity of a population and surrogates of its individuals, one needs to set up a population dynamics 
model for each species, identify its parameters common to all species concerned, and estimate 
these parameters from existing data on that suite of species. For easy exposition, however, I will 
omit the species index, unless otherwise stated. 

Now,letN(a,t)>O,OIa~~a<oo, -oo I to _< t < 00, denote the number of animals of 
age a at time t in a natural population, with an average age at birth 4 and reference time to. 
The change in N(a, t) in a time interval of length At is assumed to be proportional to N(a, t), 

such that 

220 

lV(u + Au, t + At) - N(u, t) 
At = - ma, t) + Ma, Ql vu, qc 

where F(u, t) 2 0 and M(u, t) 2 0 are, respectively, the instantaneous rate of fishing and natural 
mortalities of animals of age a at time t. The instantaneous rate of fishing mortality F(u, t) is in- 
cluded here to cater for human exploited populations; F(u, t) = 0 for unexploited populations. Fi- 
nally, notice that although Au = At or $ = 1 for many fisheries applications, Au # At or $$ # 1, 
as when fish age a is measured in years and time t in months. Expansion of N(u + Au, t + At) 

in the neighbourhood of (a, t) as N(u + Au, t + At) = N(u, t) + FAa + 91 At + O(At’) 
and passing to the limit At -t 0 give 

dE0 

N(u + Au, t + At) - N(u, t) = dN(u, t) da &V(u, t) 
At Lh x+ at ' 

which leads to 
aN(u,t) oh Nv(U,t) 

i?U YE+ a 
= - [w-o) + WU,ww%~), 

from which 
av(u,t) da aqu,t) 

au z+ at 1 * 

(1) 

(2) 

It can be proved (see the Appendix) that, at temporal equilibrium, under the assumption of the 
most stable age distribution, and if 9 = 1, equation (2) becomes 

aN(u,t) da 
F(u,t)+M(u,t)=-& ,& .=+;> 

7 

(3) 

where X = X(t), redefined from Al(t) in the Appendix, and p = p(t) are, respectively, the 
characteristic age and mean age of the equilibrial and most stable population. These assumptions 
are not as restrictive as they seem. For practical purposes and of necessity, they are made 

implicitly in almost all measurements of M(u, t), many other types of data, and many biological 
models. 

Now, both characteristic age X and mean age p can be expressed in easily measurable quantities 
of an animal individual, including its age, length, and mass. To do so, let an arbitrary measurable 
quantity S(u) be given, as a function of age a, by 

s(a) = g(u), or 

a = 9-l (S(a)), 
(4 
(5) 
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where g-‘(S(a)) is the inverse function (assumed to exist) of g(a). Substitution of equation (5) 

for a = A into equation (3) yields the general model for calculating the value of F(a, t) + M(a, t) 

from values of its surrogates 

F(a,t) + M(a,t) = 
9-l (1s(W = 9-r (i(P)) ) 

from which age, length-, and mass-based models result. 

(6) 

AGEBASED MODELS 

Little information is available on how an age-based quantity T (e.g., age at maturity, longevity, 

and observed maximum age) of a population of animals varies with the characteristic age X or 

mean age Jo of its equilibrial population. However, T = S(X) can be approximated by its Taylor 

series expansion of the first order in the neighbourhood of X0, i.e., 

S(X)=T=S(Xo)+ !p (A - A,) + 0 ((A - XOY) * 

Substitution of equation (7) into equation (3) yields 

ma, t) + wa, t) = &, (8) 

where Q = w and ,0 = Xcw - S(X0) - O((X - XO)~) are parameters (across all species in 

a group) to be estimated. Similarly, a second-order Taylor series expansion of T = S(X) in the 

neighbourhood of X0 yields 

S(A) = T = S(Xo) + F (A - X0) + d2;;y (A - A(# + 0 ((A - xoy) . 

Substitution of this equation into equation (3) gives 

F(a) t) + M(a) t) = a 
Ei-JpTET’ 

where 

(II= 
d2S 00) 

dX2 ’ 

p= (~)2-~[s(Ao)+0(A-Xo)3] d2;j2’, and 

d = Xod2S Go> dS (Xo) -- 
dA2 dA 

are parameters (across all species in a group) to be estimated. In using an age-based model, it is 

important to choose an age-based quantity, such that (Y, j3, and E are constant across all species 

of interest. 

Notice that equation (8) differs from, but can be reduced to, Ohsumi’s [l, p. 401, lines lO- 

191 (T = T, F(a,t) = 0, M(a,t) = M, cr = log(a), and 0 = 0), to Hoenig’s equation (2) 

(o = -log(lc), p = 0, 2 = F(a,t) + M(a,t), and T = TV) [4], and to Jensen’s equation (7) 

(F(a,t) = 0, (Y = 1.65, p = 0, and T = z,) [S]. Their equations were, however, derived under 

questionable assumptions. Ohsumi [l] defined the longevity of a population as the age to which 

only one individual is observed to survive. This definition gives an underestimate of longevity, for 
that individual may well live for some time after observation. Similarly, Hoenig defined it as the 

age to which an arbitrarily small proportion of a stock survive [4]. Finally, Jensen’s equation (5)) 
and its resulting equations, assume that fish of a stock mature when their fecundity function f(a) 

at age a takes its maximum value [S]. Alternatively, one can maximiie their reproductive output 

in their life history saT, f(a) da to yield an average age at maturity a, = ah! Thus, animals 
should mature as early as possible and, in fact, at birth, to maximize their reproductive output 

in their lives. Although some species of insects adopt this rather interesting lie history strategy, 
the great majority of species of animals do not. 
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LENGTH-BASED MODELS 

In this section, I will relate characteristic age X and mean age ~1 of an equilibrial population to 
a length-based quantity. Thus, consider the length of its individuals at age a L(a). Specifically, 

I will now consider the most commonly used von Bert&a&y, logistic, and Gompertz growth 

equations, which, in a differential equation, are given, respectively, by 

y=K(L,-L), OIK, O<L<L,, 05% I KL,, 

dW4 
da 

dL(4 
da 

O<K, O<L<L,, 05% 5 +L,, and 

dL(a) 1 
OlK, 05L<L,, 05TG-KL,, 

e 

with von Bertalanffy, logistic or Gompertz parameters (K, L,). Note that K and L, have 

exactly the same meaning in those equations: K is the growth rate of an individual animal; 

L, is its asymptotic size. Solution of these equations, each as an initial value problem with 

L(a)jazao = L(ao), yields, respectively [S], 

L(a) = L, - [L, - L (ae)] e- K(a-oo) 9 

L (a01 Lw 
L(a) = L (a~) + [L, - L (ao)J e-K(a-oo) ’ 

Lb) 

[ 1 
e--K(a--uo) 

L(a) = L, r 
m 

It should be stressed here that L(ao) is defined as the length of an individual at age ae: ae can be 

any age of that individual right from its genesis to its death, and L(ae) its corresponding length. 

These equations can be rewritten as 

ilog 
L, 

a=as- - L(o) 

> Lccl-L(a0) ’ 

a=ac- f log 
( 

L (4 ]LW - L(a)1 

L(a) [L, - L (a0)l > ’ 
and 

a=%- + log log (LJL(4) 

log (L,/L (a011 > * 

(9-l) 

(9.2) 

(9.3) 

Substitution of equations (9.1)-(9.3) f or a = X into equation (3) yields, respectively, 

F(a, t) + M(a, t) = 

F(a, t) + M(a,t) = 

F(a, t) + M(a, t) = 

K 

Kao - log ((Loo - L(8) / (L, - L (ao))) ’ 
(10.1) 

Kao - log (L (4 [L, - L$)] / (L(X) IL, - L (ad)) ’ 
(10.2) 

K 

Kao - log (log (L,/L(4) / log (L/L (ad)) * 
(10.3) 

All growth parameters and variables are now in equations (lO.l)-(10.3). But, what is to be 

estimated from the (multispecific) data? A parameter must be invariant, at least approximately, 

across all species of interest. Both L(A) and ae vary across all species, and hence, are not 
appropriate parameters. However, the logarithms of the relative quantities and Kao in these 
equations vary much less in extent across all species, or a group of species. They are therefore 

assumed, to the first approximation, to be a composite parameter across all species, in which 

case equations (lO.l)-(10.3) all become 

F(a,t) + M(a,t) = 5, (11) 
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but with parameter 

In using one of the length-based models, one needs to choose a length-based quantity L(a), a 

reference length L( a0 , and a reference age ue, such that 7 is constant across all species concerned. ) 
Clearly, equation (11) has the same functional form as Jensen’s equation (8) [6], which was, 

however, derived under a restrictive assumption (see above). 

MASS-BASED MODELS 
THROUGH LENGTH 

To relate characteristic age X and mean age /A of an equilibria1 animal population to a mass- 

based quantity through a length-based quantity, one only needs to replace L(X) in equation (11) 

with its associated mass-based quantity. For example, let the general sllometric equation 

S(a) = c’ + a’L(a)b’, (see PI) or (12) 

L(a)= (“wy)-” (13) 

represent the relationship between the mass of an animal S(a) and its length L(a) at age a, with 

allometric parameters a’ > 0, 6’ > 0, and c’ < 0. Substitution of equation (13) for a = X into 

equation (11) yields 

with parameter 

F(a, t) + M(a,t) = $, (14) 

6 = Kao - log 
L, - ((S(X) - d) /at)-b’ 

L, - L(a0) ’ 

b = Ka,, - log 
L (~0) [L” - ((SO) - 4 lal,-b’] 

L(A) [L, - L(oo)l ’ *d 

d = Kao - log 

( 

log (L ((SW - 4 latlb’) 

log (Lc4L (oo)) 
1. 

Similarly, models alternative to Gunderson’s [2] and Gunderson and Dygert’s [5] models can be 

readily derived for predicting the instantaneous rate of natural mortality of animals from their 

gonadosomatic index, because their gonadosomatic index is a function of their length. 

DATA AND ANALYSIS 

Use of equation (8) to estimate cy and p (assumed to be constant over all species in a group) 
requires data on the instantaneous rate of fishing mortality F(a, t), the instantaneous rate of 

natural mortality M(a, t) and an age-based quantity T for some species in a group; use of equa 

tion (11) to estimate 7 (assumed to be constant over all species in a group) requires dsta on 
F(a, t), M(a, t) and growth rate K for some species in a group. However, for many species, the 
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estimates of F(a, t) are usually not very reliable; M(a, t) is usually substantially overestimated. 
The problem with F(a, t) can be eliminated or reduced by using data from unexploited or lightly 

exploited populations. Unfortunately, almost all estimates of M(a,t) come from heavily fished 

populations. 

To illustrate my method, three sets of data from three groups of animals are analysed. Since 

reliable estimates of F(a, t) are not readily available, in this analysis, they are either assumed to be 

zero or estimated as a parameter common to all species concerned. Thus, fitting of equation (8) 

to Ohsumi’s data [l] on the instantaneous rate of natural mortality M(a,t) of cetaceans as a 

function of their observed maximum age T, under the assumption that the errors in M(a,t) 

are independent normal variates, yields &‘(a, t) = 0.0042(f0.0197) . yrr-‘, B = 4.8801(&2.1502), 

fi = -1.1525(&10.5027)yr, Fs,rs = 383.8488, P < 0.0001, r2 = 0.9863, n = 19 (Figure 1). 

Because of the relatively high estimates of the standard errors of @(a, t) and a, three submodels 

of equations (8) were also fitted. For equation (8) (F(a,t) = 0), 8 = 4.4418(&0.3486), fi = 

-3.2320(f3.1042)yr, J’s,17 = 609.7054, P < 0.0001, r2 = 0.9863, n = 19; for equation (8) 

(,L? = 0), &o,t) = 0.0062(f0.0063) - yr-l, & = 5.1144(&0.3693), F2,17 = 611.2678, P < 0.0001, 

r2 = 0.9863, n = 19 (Figure 1). The relatively high estimates of the standard errors of b 

and P(a, t) and little change in the coefficient of determination r2 from fitting both submodels 

indicate that, for this set of data, !‘(a, t) and p can be set to zero. So, fitting of equation (8) to. 

the same data on the instantaneous rate of natural mortality M(a,t) of cetaceans ss a function 
of their observed maximum age T, under the assumptions that F(a, t) = 0, 0 = 0, and the errors 

in M(a,t) are independent normal variates, yields & = 4.7725(f0.1365), Fi,is = 1222.0446, 

P < 0.0001, r2 = 0.9855, n = 19 (Figure 1). Notice that, in all analyses, the observed maximum 

age of a cetacean population is about five times as high as the mean age of all individuals in 

the population, as is consistent with a well-known fact that the maximum age of any population 

0.20 j 

0.00-i, , . 
0 50 100 

Observed maximum age T (yr) 

Figure 1. Observed (0) and expected (0 = 0, ---; all other caae8, -) instantaneous 
rate of natural mortality as a function of ohserved maximum age for cetaceans, aa 
given by equation (8) (a # 0) and its submodels. 

is at least as great as and generally much greater than the mean age of all individuals in the 

population. 
Indeed, equation (8) (with a residual sum of squares of 0.0017268 and residual degrees of 

freedom of 16) is not significantly different from its submodel equation (8) (F(cr, t) = 0) (with 
a residual sum of squares of 0.0017325 and residual degrees of freedom of 17) (Fr,rs = 0.0532, 
P = 0.8206) or equation (8) (0 = 0) (with a residual sum of squares of 0.0017281 and residual 
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degrees of freedom of 17) (FIJS = 0.0127, P = 0.9117) [lo]. Similarly, neither ‘equation (8) 
(F(a,t) = 0) nor equation (8) (p = 0) is significantly different from its submodel equation (8) 
(F(a,t) = 0 and p = 0) (with a residual sum of squares of 0.0018290 and residual degrees of 
freedom of 18) (Fr,rr = 0.9473, P = 0.3441; &,f, = 0.9926, P = 0.3331). The final and most 
parsimonious model is, therefore, equation (8) (F(o, t) = 0 and p = 0). 

Fitting of equation (11) to Gunderson and Dygert’s data [5] on the instantaneous rate of 
natural mortality M(a, t) of fishes as a function of their fishing mortality F(a,t) and growth 
rate K, under the assumption that the errors in M(a,t) are independent normal variates, yields 
k(a,t) = -0.0652(&0.1246) . yr-‘, i/r = 1.0632(&O&53), Fl,ls = 5.700, P = 0.0281, ra = 
0.2405, n = 20 (Fire 2). Again, the relatively high estimate of the standard error of P(a, t) 
indicates that, for this set of data, F(a,t) can be set to zero. Again, fitting of equation (11) 
to these data on the instantaneous rate of natural mortality M(a,t) of fishes ss a function of 
growth rate K, under the assumptions that F(a, t) = 0 and the errors in M(a, t) are independent 
normal variates, yields i/r = 1.2718(&0.1944), Fl,lg = 42.8242, P = 0.0001, r2 = 0.6927, n = 20 
(Figure 2). 

1.0' . 

z 
. 

2 
0.8. 

; 0.8- . 

i 
:.------ 

._-_ __d_ /..$ 

0.4- 
/_/‘. /.. 

$ 0.2- &$P-** 

Z l _/~ . 
Z l * . 

0.0-t. , . ( , , 

0.0 0.1 0.2 0.3 0.4 

Growth rate K (/yr) 

Figure 2. Observed (0) and expected (F(a, t) # 0, -; F(ca, t) = 0, ---) instanta- 
neoue rate of natural mortality as a function of growth rates of fishes, as given by 
equation (11). 

0 1 2 3 

Growth rate K (,‘yr) 

Figure 3. Observed (0) and expected (F(a, t) # 0, --; F(a, t) = 0, ---) instantaneous 
rate of natural mortality FIS a function of growth rates of benthic invertebrates, EB 
given by equation (11). 
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Fitting of equation (11) to Brey and Gage’s data [7] on the instantaneous rate of natural 

mortality M(o,t) of benthic invertebrates as a function of their fishing mortality F(a,t) and 

growth rate K, under the assumption that the errors in M(ca, t) are independent normal variates, 

yields $‘(a, t) = 0.1077(f0.1251) - yr-‘, i/y = 2.5709(&0.1629), Fr,ss = 249.2049, P = 0.0001, 

r2 = 0.7570, n = 82 (Figure 3). Similarly, fitting of equation (11) to these data on the instanta 

neous rate of natural mortality M(a, t) of benthic invertebrates ss a function of growth rate K, 

under the assumptions that F(a, t) = 0 and the errors in M(a, t) are independent normal variates, 

yields i/y = 2.4825(&0.1262), &,sl = 386.6960, P = 0.0001, r2 = 0.8268, n = 82 (Figure 3). 

DISCUSSION 

This work demonstrates that the instantaneous rate of natural mortality of animals in a natural 

population can be derived as a function of one or more of its surrogates, thereby providing age-, 

length-, and mass-based models, or models based on other biologically meaningful quantities for 

its estimation. Although intended mainly for fishery applications, these models also apply to a 

greater variety of animals. 

The instantaneous rate of natural mortality of an animal population is one of the most difficult 

and elusive quantities to estimate. In fact, its estimates are often substantially positively biased. 

Like previous models, those developed above require that uncertainties in F(a, t) + M(a, t) be 

negligible to avoid their propagation to estimates of parameters. 

The above models assume that the populations concerned are at temporal equilibrium. Such 

an assumption is necessary but is not, however, ss restrictive as it seems. In fact, it underlies 

most biological studies. Although unlikely to be valid over long time scales, it should be so over 

reasonably short time scales. Thus, these model8 can be used to study long-term changes in the 

instantaneous rate of natural mortality of animals’ populations by computing short-term ones. 

Finally, some age-based models may be better than length- or mass-based ones, because certain 

age-based quantities are more reliably measured. Also, the growth rates of length- or mass-based 

quantities may have different interpretations and hence can be ss elusive as M(a, t) itself. That 

is probably why equation (11) was not fitted to Gunderson and Dygert’s data [5] and Brey and 

Gage’s data [7] very well. 

APPENDIX 

DERIVATION OF EQUATION (3) 

At temporal equilibrium, i.e., w = 0, equation (2) becomes 

q&t) +M(a,t) = -& aN;;9t) 2. , (AlI 

There are an infinite number of ways for allocating a total of N(t) individuals at time t of 
a population at temporal equilibrium over the (continuous) agesinterval [cy, /3]. How can then 
N(a, t) be determined uniquely as a function of age a? The most probable distribution of this 
infinitum must be the most stable in the absence of large environmental disturbances. Thii 
assumption is valid for many species of large sizes, at least approximately and in the short-term. 
Under this assumption, N(ca, t) as a function of age a at time t can be found, as a simple variation 
problem, by maximizing the entropy of the distribution function 

under the constraints that 

J 

P 
- ~(a, t) log (~(a, t)) do (A2) 

a 

I 

P 
l= p(o, t> h and 

a 
p(t) = J” ap(a, t) da, 

Q 
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where p(a,t) = N(a, t)/N(t). These constraints are, of course, justified mathematically [ll]. To 
solve this variation problem, let 

H = -p(u,t) log (~(a, t)) + ~o(t)Pta, t) - &da. t), 

where Xi(t)s are the Lagrange multipliers to be determined from the constraints. Now, differen- 
tiating H with respect to p(u, t) and letting 

dH 
- = - [log (P(U, t)) + l] + Al(t) - $) = 0 
dp(u> t) 

yield 

p(o,t) = e &(t)-l-alXl(t) 
(A3) 

Equation (A3) does correspond to the maximum entropy or maximum value of equation (A2) 

of cl(Wr(t) + 1 - X0(t), for -* = -l/Aa,t) < 0. Substitution of equation (A3) into the 

constraint 1 = s,” p(u, t) da gives 

P B 
l= J p(u, t) da = 

a J eh(t)--l--a/(h(t)) da = Xl(t)eAo(t)-le-a/A’(t) 
a [ 

1 _ ,--(L+d/h(t) 
1 9 

from which 

z-+&t) = 
1 

x,(t) [l - ~-(P-4/w] 

,--b-amm* 

Applying the constraint p(t) = Ji up(u, t) da on equation (A4) gives 

= a + Al(t) - (p + Al(t)) e-(fl-a)/Al(t) 

1 - ,-(a-~)l~lw , 

from which 
P(u 

9 
t> = @ + xl(t) - P@)e-(a-cl)/xl(t) 

h(W - 4 
9 a 5 a 5,8, with 

cl@> = 
a + Xl(t) - (/I + Xl(t)) e-(B-a)lAl(t) 

1 - e-(8-4/&W 

Since p(a, t) = N(u, t)/N(t), 

N(u, q = w (P + h(t) - P(t)> e-(a-a)/Al(t) 

h(t)@ - 4 > CY < a < ,B, with 

I = Q + Al(t) - (P + Al(t)) e-(P-a)lxl(t) 
1 - e-(P-a)IXl(t) 

Differentiating iV(u, t) with respect to a yields 

aN(a,t) = 1 
_P 

&A Al 0) 
w (P + h(t) - CL@)) ,-(a-a)/X1(t) _ 

h(W - 4 
l qu, t) --- 

h(t) ’ 
or 

1 av(a,t) 1 .- 
iV(u, t) 3a =xl(t>* 

Now, let us see what Al(t) means from 

(A5) 

W) 

W) 

W) 

I = a + Al(t) - (P + Al(t)) e-(P-a)ixl(t) 
1 _ e-(b-a)lxl(t) 
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If p --f 00, Al(t) = p(t) - a; if ,8 -+ oo and cy = 0, xl(t) = p(t). So, xl(t) is indeed a measure of 
an animal’s age, with an approximate value of p(t) - cy or p(t)! Therefore, 

1 8N(a,t) da 1 da 1 da lda -- 
N(a,t) aa dt=mdt% 

--. 
[p(t) - a] z = p(t) dt W 

If $ = 1, i.e., an individual’s age changes at the same rate as time, equation (A9) becomes 

1 dN(a, t) da 1 1 1 -- 
N(a,t) da z=Xl(t)=/L(t)-cPM* (AlO) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
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